Make a more Rusty LLIR for the lib that is compiled to LLVM IR

This commit is contained in:
Sofia 2025-07-06 19:47:05 +03:00
parent 454cefafc9
commit 58117d86e4
6 changed files with 1007 additions and 0 deletions

View File

@ -0,0 +1,60 @@
use reid_lib::test::{ConstValue, Context, InstructionKind, IntPredicate, TerminatorKind, Type};
fn main() {
use ConstValue::*;
use InstructionKind::*;
let context = Context::new();
let mut module = context.module("test");
let mut main = module.function("main", Type::I32, Vec::new());
let mut m_entry = main.block("entry");
let mut fibonacci = module.function("fibonacci", Type::I32, vec![Type::I32]);
let arg = m_entry.build(Constant(I32(5))).unwrap();
let fibonacci_call = m_entry
.build(FunctionCall(fibonacci.value(), vec![arg]))
.unwrap();
m_entry
.terminate(TerminatorKind::Ret(fibonacci_call))
.unwrap();
let mut f_entry = fibonacci.block("entry");
let num_3 = f_entry.build(Constant(I32(3))).unwrap();
let param_n = f_entry.build(Param(0)).unwrap();
let cond = f_entry
.build(ICmp(IntPredicate::LessThan, param_n, num_3))
.unwrap();
let mut then_b = fibonacci.block("then");
let mut else_b = fibonacci.block("else");
f_entry
.terminate(TerminatorKind::CondBr(cond, then_b.value(), else_b.value()))
.unwrap();
let ret_const = then_b.build(Constant(I32(1))).unwrap();
then_b.terminate(TerminatorKind::Ret(ret_const)).unwrap();
let const_1 = else_b.build(Constant(I32(1))).unwrap();
let const_2 = else_b.build(Constant(I32(2))).unwrap();
let param_1 = else_b.build(Sub(param_n, const_1)).unwrap();
let param_2 = else_b.build(Sub(param_n, const_2)).unwrap();
let call_1 = else_b
.build(FunctionCall(fibonacci.value(), vec![param_1]))
.unwrap();
let call_2 = else_b
.build(FunctionCall(fibonacci.value(), vec![param_2]))
.unwrap();
let add = else_b.build(Add(call_1, call_2)).unwrap();
else_b.terminate(TerminatorKind::Ret(add)).unwrap();
dbg!(&context);
context.compile();
}

View File

@ -16,6 +16,7 @@ use llvm_sys::{LLVMBuilder, LLVMContext, LLVMIntPredicate, core::*, prelude::*};
use types::{BasicType, BasicValue, FunctionType, IntegerType, Value};
use util::{ErrorMessageHolder, from_cstring, into_cstring};
pub mod test;
pub mod types;
mod util;

View File

@ -0,0 +1,334 @@
use std::{cell::RefCell, marker::PhantomData, rc::Rc};
use crate::test::{ConstValue, InstructionKind, TerminatorKind, Type};
use super::{BlockData, FunctionData, InstructionData, ModuleData, util::match_types};
#[derive(Debug, Clone, Hash, Copy, PartialEq, Eq)]
pub struct ModuleValue(usize);
#[derive(Debug, Clone, Hash, Copy, PartialEq, Eq)]
pub struct FunctionValue(ModuleValue, usize);
#[derive(Debug, Clone, Hash, Copy, PartialEq, Eq)]
pub struct BlockValue(FunctionValue, usize);
#[derive(Debug, Clone, Hash, Copy, PartialEq, Eq)]
pub struct InstructionValue(BlockValue, usize);
#[derive(Debug, Clone)]
pub struct ModuleHolder {
pub(crate) value: ModuleValue,
pub(crate) data: ModuleData,
pub(crate) functions: Vec<FunctionHolder>,
}
#[derive(Debug, Clone)]
pub struct FunctionHolder {
pub(crate) value: FunctionValue,
pub(crate) data: FunctionData,
pub(crate) blocks: Vec<BlockHolder>,
}
#[derive(Debug, Clone)]
pub struct BlockHolder {
pub(crate) value: BlockValue,
pub(crate) data: BlockData,
pub(crate) instructions: Vec<InstructionHolder>,
}
#[derive(Debug, Clone)]
pub struct InstructionHolder {
pub(crate) value: InstructionValue,
pub(crate) data: InstructionData,
}
#[derive(Debug, Clone)]
pub struct Builder {
modules: Rc<RefCell<Vec<ModuleHolder>>>,
}
impl Builder {
pub fn new() -> Builder {
Builder {
modules: Rc::new(RefCell::new(Vec::new())),
}
}
pub(crate) fn add_module(&self, data: ModuleData) -> ModuleValue {
let value = ModuleValue(self.modules.borrow().len());
self.modules.borrow_mut().push(ModuleHolder {
value,
data,
functions: Vec::new(),
});
value
}
pub(crate) unsafe fn add_function(
&self,
mod_val: &ModuleValue,
data: FunctionData,
) -> FunctionValue {
unsafe {
let mut modules = self.modules.borrow_mut();
let module = modules.get_unchecked_mut(mod_val.0);
let value = FunctionValue(module.value, module.functions.len());
module.functions.push(FunctionHolder {
value,
data,
blocks: Vec::new(),
});
value
}
}
pub(crate) unsafe fn add_block(&self, fun_val: &FunctionValue, data: BlockData) -> BlockValue {
unsafe {
let mut modules = self.modules.borrow_mut();
let module = modules.get_unchecked_mut(fun_val.0.0);
let function = module.functions.get_unchecked_mut(fun_val.1);
let value = BlockValue(function.value, function.blocks.len());
function.blocks.push(BlockHolder {
value,
data,
instructions: Vec::new(),
});
value
}
}
pub(crate) unsafe fn add_instruction(
&self,
block_val: &BlockValue,
data: InstructionData,
) -> Result<InstructionValue, ()> {
unsafe {
let mut modules = self.modules.borrow_mut();
let module = modules.get_unchecked_mut(block_val.0.0.0);
let function = module.functions.get_unchecked_mut(block_val.0.1);
let block = function.blocks.get_unchecked_mut(block_val.1);
let value = InstructionValue(block.value, block.instructions.len());
block.instructions.push(InstructionHolder { value, data });
// Drop modules so that it is no longer mutable borrowed
// (check_instruction requires an immutable borrow).
drop(modules);
self.check_instruction(&value)?;
Ok(value)
}
}
pub(crate) unsafe fn terminate(
&self,
block: &BlockValue,
value: TerminatorKind,
) -> Result<(), ()> {
unsafe {
let mut modules = self.modules.borrow_mut();
let module = modules.get_unchecked_mut(block.0.0.0);
let function = module.functions.get_unchecked_mut(block.0.1);
let block = function.blocks.get_unchecked_mut(block.1);
if let Some(_) = &block.data.terminator {
Err(())
} else {
block.data.terminator = Some(value);
Ok(())
}
}
}
pub(crate) unsafe fn module_data(&self, value: &ModuleValue) -> ModuleData {
unsafe { self.modules.borrow().get_unchecked(value.0).data.clone() }
}
pub(crate) unsafe fn function_data(&self, value: &FunctionValue) -> FunctionData {
unsafe {
self.modules
.borrow()
.get_unchecked(value.0.0)
.functions
.get_unchecked(value.1)
.data
.clone()
}
}
pub(crate) unsafe fn block_data(&self, value: &BlockValue) -> BlockData {
unsafe {
self.modules
.borrow()
.get_unchecked(value.0.0.0)
.functions
.get_unchecked(value.0.1)
.blocks
.get_unchecked(value.1)
.data
.clone()
}
}
pub(crate) unsafe fn instr_data(&self, value: &InstructionValue) -> InstructionData {
unsafe {
self.modules
.borrow()
.get_unchecked(value.0.0.0.0)
.functions
.get_unchecked(value.0.0.1)
.blocks
.get_unchecked(value.0.1)
.instructions
.get_unchecked(value.1)
.data
.clone()
}
}
pub(crate) fn get_modules(&self) -> Rc<RefCell<Vec<ModuleHolder>>> {
self.modules.clone()
}
// pub(crate) fn get_functions(&self, module: ModuleValue) -> Vec<(FunctionValue, FunctionData)> {
// unsafe {
// self.modules
// .borrow()
// .get_unchecked(module.0)
// .2
// .iter()
// .map(|h| (h.0, h.1.clone()))
// .collect()
// }
// }
// pub(crate) fn get_blocks(&self, function: FunctionValue) -> Vec<(BlockValue, BlockData)> {
// unsafe {
// self.modules
// .borrow()
// .get_unchecked(function.0.0)
// .2
// .get_unchecked(function.1)
// .2
// .iter()
// .map(|h| (h.0, h.1.clone()))
// .collect()
// }
// }
// pub(crate) fn get_instructions(
// &self,
// block: BlockValue,
// ) -> (
// Vec<(InstructionValue, InstructionData)>,
// Option<TerminatorKind>,
// ) {
// unsafe {
// let modules = self.modules.borrow();
// let block = modules
// .get_unchecked(block.0.0.0)
// .2
// .get_unchecked(block.0.1)
// .2
// .get_unchecked(block.1);
// (
// block.2.iter().map(|h| (h.0, h.1.clone())).collect(),
// block.1.terminator.clone(),
// )
// }
// }
pub fn check_instruction(&self, instruction: &InstructionValue) -> Result<(), ()> {
use super::InstructionKind::*;
unsafe {
match self.instr_data(&instruction).kind {
Param(_) => Ok(()),
Constant(_) => Ok(()),
Add(lhs, rhs) => match_types(&lhs, &rhs, &self).map(|_| ()),
Sub(lhs, rhs) => match_types(&lhs, &rhs, &self).map(|_| ()),
ICmp(_, lhs, rhs) => {
let t = match_types(&lhs, &rhs, self)?;
if t.comparable() {
Ok(())
} else {
Err(()) // TODO error: Types not comparable
}
}
FunctionCall(fun, params) => {
let param_types = self.function_data(&fun).params;
if param_types.len() != params.len() {
return Err(()); // TODO error: invalid amount of params
}
for (a, b) in param_types.iter().zip(params) {
if *a != b.get_type(&self)? {
return Err(()); // TODO error: params do not match
}
}
Ok(())
}
}
}
}
}
impl InstructionValue {
pub fn get_type(&self, builder: &Builder) -> Result<Type, ()> {
use InstructionKind::*;
use Type::*;
unsafe {
match &builder.instr_data(self).kind {
Param(nth) => builder
.function_data(&self.0.0)
.params
.get(*nth)
.copied()
.ok_or(()),
Constant(c) => Ok(c.get_type()),
Add(lhs, rhs) => match_types(lhs, rhs, &builder),
Sub(lhs, rhs) => match_types(lhs, rhs, &builder),
ICmp(pred, lhs, rhs) => Ok(Type::Bool),
FunctionCall(function_value, _) => Ok(builder.function_data(function_value).ret),
}
}
}
}
impl ConstValue {
pub fn get_type(&self) -> Type {
use Type::*;
match self {
ConstValue::I32(_) => I32,
ConstValue::U32(_) => U32,
}
}
}
impl Type {
pub fn comparable(&self) -> bool {
match self {
Type::I32 => true,
Type::U32 => true,
Type::Bool => true,
Type::Void => false,
}
}
pub fn signed(&self) -> bool {
match self {
Type::I32 => true,
Type::U32 => false,
Type::Bool => false,
Type::Void => false,
}
}
}
impl TerminatorKind {
pub fn get_type(&self, builder: &Builder) -> Result<Type, ()> {
use TerminatorKind::*;
match self {
Ret(instr_val) => instr_val.get_type(builder),
Branch(_) => Ok(Type::Void),
CondBr(_, _, _) => Ok(Type::Void),
}
}
}

View File

@ -0,0 +1,364 @@
use std::{collections::HashMap, ffi::CString, hash::Hash, process::Termination, ptr::null_mut};
use llvm_sys::{
LLVMIntPredicate,
analysis::LLVMVerifyModule,
core::*,
prelude::*,
target::{
LLVM_InitializeAllAsmParsers, LLVM_InitializeAllAsmPrinters, LLVM_InitializeAllTargetInfos,
LLVM_InitializeAllTargetMCs, LLVM_InitializeAllTargets, LLVMSetModuleDataLayout,
},
target_machine::{
LLVMCodeGenFileType, LLVMCreateTargetDataLayout, LLVMCreateTargetMachine,
LLVMGetDefaultTargetTriple, LLVMGetTargetFromTriple, LLVMTargetMachineEmitToFile,
},
};
use crate::util::{ErrorMessageHolder, from_cstring, into_cstring};
use super::{
ConstValue, Context, Function, IntPredicate, Module, TerminatorKind, Type,
builder::{
BlockHolder, BlockValue, Builder, FunctionHolder, FunctionValue, InstructionHolder,
InstructionValue, ModuleHolder,
},
};
pub struct LLVMContext {
context_ref: LLVMContextRef,
builder_ref: LLVMBuilderRef,
}
impl Context {
pub fn compile(&self) {
unsafe {
let context_ref = LLVMContextCreate();
let context = LLVMContext {
context_ref,
builder_ref: LLVMCreateBuilderInContext(context_ref),
};
for holder in self.builder.get_modules().borrow().iter() {
holder.compile(&context, &self.builder);
}
LLVMDisposeBuilder(context.builder_ref);
LLVMContextDispose(context.context_ref);
}
}
}
pub struct LLVMModule<'a> {
builder: &'a Builder,
context_ref: LLVMContextRef,
builder_ref: LLVMBuilderRef,
module_ref: LLVMModuleRef,
functions: HashMap<FunctionValue, LLVMFunction>,
blocks: HashMap<BlockValue, LLVMBasicBlockRef>,
values: HashMap<InstructionValue, LLVMValue>,
}
#[derive(Clone, Copy)]
pub struct LLVMFunction {
type_ref: LLVMTypeRef,
value_ref: LLVMValueRef,
}
pub struct LLVMValue {
ty: Type,
value_ref: LLVMValueRef,
}
impl ModuleHolder {
fn compile(&self, context: &LLVMContext, builder: &Builder) {
unsafe {
let module_ref = LLVMModuleCreateWithNameInContext(
into_cstring(&self.data.name).as_ptr(),
context.context_ref,
);
// Compile the contents
let mut functions = HashMap::new();
for function in &self.functions {
functions.insert(
function.value,
function.compile_signature(context, module_ref),
);
}
let mut module = LLVMModule {
builder,
context_ref: context.context_ref,
builder_ref: context.builder_ref,
module_ref,
functions,
blocks: HashMap::new(),
values: HashMap::new(),
};
for function in &self.functions {
function.compile(&mut module);
}
LLVM_InitializeAllTargets();
LLVM_InitializeAllTargetInfos();
LLVM_InitializeAllTargetMCs();
LLVM_InitializeAllAsmParsers();
LLVM_InitializeAllAsmPrinters();
let triple = LLVMGetDefaultTargetTriple();
let mut target: _ = null_mut();
let mut err = ErrorMessageHolder::null();
LLVMGetTargetFromTriple(triple, &mut target, err.borrow_mut());
println!("{:?}, {:?}", from_cstring(triple), target);
err.into_result().unwrap();
let target_machine = LLVMCreateTargetMachine(
target,
triple,
c"generic".as_ptr(),
c"".as_ptr(),
llvm_sys::target_machine::LLVMCodeGenOptLevel::LLVMCodeGenLevelNone,
llvm_sys::target_machine::LLVMRelocMode::LLVMRelocDefault,
llvm_sys::target_machine::LLVMCodeModel::LLVMCodeModelDefault,
);
let data_layout = LLVMCreateTargetDataLayout(target_machine);
LLVMSetTarget(module_ref, triple);
LLVMSetModuleDataLayout(module_ref, data_layout);
let mut err = ErrorMessageHolder::null();
LLVMVerifyModule(
module_ref,
llvm_sys::analysis::LLVMVerifierFailureAction::LLVMPrintMessageAction,
err.borrow_mut(),
);
err.into_result().unwrap();
let mut err = ErrorMessageHolder::null();
LLVMTargetMachineEmitToFile(
target_machine,
module_ref,
CString::new("hello.asm").unwrap().into_raw(),
LLVMCodeGenFileType::LLVMAssemblyFile,
err.borrow_mut(),
);
err.into_result().unwrap();
let mut err = ErrorMessageHolder::null();
LLVMTargetMachineEmitToFile(
target_machine,
module_ref,
CString::new("hello.o").unwrap().into_raw(),
LLVMCodeGenFileType::LLVMObjectFile,
err.borrow_mut(),
);
err.into_result().unwrap();
let module_str = from_cstring(LLVMPrintModuleToString(module_ref));
println!("{}", module_str.unwrap());
}
}
}
impl FunctionHolder {
unsafe fn compile_signature(
&self,
context: &LLVMContext,
module_ref: LLVMModuleRef,
) -> LLVMFunction {
unsafe {
let ret_type = self.data.ret.as_llvm(context.context_ref);
let mut param_types: Vec<LLVMTypeRef> = self
.data
.params
.iter()
.map(|t| t.as_llvm(context.context_ref))
.collect();
let param_ptr = param_types.as_mut_ptr();
let param_len = param_types.len();
let fn_type = LLVMFunctionType(ret_type, param_ptr, param_len as u32, 0);
let function_ref =
LLVMAddFunction(module_ref, into_cstring(&self.data.name).as_ptr(), fn_type);
LLVMFunction {
type_ref: fn_type,
value_ref: function_ref,
}
}
}
unsafe fn compile(&self, module: &mut LLVMModule) {
unsafe {
let own_function = *module.functions.get(&self.value).unwrap();
for block in &self.blocks {
let block_ref = LLVMCreateBasicBlockInContext(
module.context_ref,
into_cstring(&self.data.name).as_ptr(),
);
LLVMAppendExistingBasicBlock(own_function.value_ref, block_ref);
module.blocks.insert(block.value, block_ref);
}
for block in &self.blocks {
block.compile(module, &own_function);
}
}
}
}
impl BlockHolder {
unsafe fn compile(&self, module: &mut LLVMModule, function: &LLVMFunction) {
unsafe {
let block_ref = *module.blocks.get(&self.value).unwrap();
LLVMPositionBuilderAtEnd(module.builder_ref, block_ref);
for instruction in &self.instructions {
let key = instruction.value;
let ret = instruction.compile(module, function, block_ref);
module.values.insert(key, ret);
}
self.data
.terminator
.clone()
.expect(&format!(
"Block {} does not have a terminator!",
self.data.name
))
.compile(module, function, block_ref);
}
}
}
impl InstructionHolder {
unsafe fn compile(
&self,
module: &LLVMModule,
function: &LLVMFunction,
block: LLVMBasicBlockRef,
) -> LLVMValue {
let ty = self.value.get_type(module.builder).unwrap();
let val = unsafe {
use super::InstructionKind::*;
match &self.data.kind {
Param(nth) => LLVMGetParam(function.value_ref, *nth as u32),
Constant(val) => val.as_llvm(module.context_ref),
Add(lhs, rhs) => {
let lhs_val = module.values.get(&lhs).unwrap().value_ref;
let rhs_val = module.values.get(&rhs).unwrap().value_ref;
LLVMBuildAdd(module.builder_ref, lhs_val, rhs_val, c"add".as_ptr())
}
Sub(lhs, rhs) => {
let lhs_val = module.values.get(&lhs).unwrap().value_ref;
let rhs_val = module.values.get(&rhs).unwrap().value_ref;
LLVMBuildSub(module.builder_ref, lhs_val, rhs_val, c"sub".as_ptr())
}
ICmp(pred, lhs, rhs) => {
let lhs_val = module.values.get(&lhs).unwrap().value_ref;
let rhs_val = module.values.get(&rhs).unwrap().value_ref;
LLVMBuildICmp(
module.builder_ref,
pred.as_llvm(ty.signed()),
lhs_val,
rhs_val,
c"icmp".as_ptr(),
)
}
FunctionCall(function_value, instruction_values) => {
let fun = module.functions.get(&function_value).unwrap();
let mut param_list: Vec<LLVMValueRef> = instruction_values
.iter()
.map(|i| module.values.get(i).unwrap().value_ref)
.collect();
LLVMBuildCall2(
module.builder_ref,
fun.type_ref,
fun.value_ref,
param_list.as_mut_ptr(),
param_list.len() as u32,
c"call".as_ptr(),
)
}
}
};
LLVMValue { ty, value_ref: val }
}
}
impl TerminatorKind {
fn compile(
&self,
module: &LLVMModule,
function: &LLVMFunction,
block: LLVMBasicBlockRef,
) -> LLVMValue {
let ty = self.get_type(module.builder).unwrap();
let val = unsafe {
match self {
TerminatorKind::Ret(val) => {
let value = module.values.get(val).unwrap();
LLVMBuildRet(module.builder_ref, value.value_ref)
}
TerminatorKind::Branch(block_value) => {
let dest = *module.blocks.get(block_value).unwrap();
LLVMBuildBr(module.builder_ref, dest)
}
TerminatorKind::CondBr(cond, then_b, else_b) => {
let cond_val = module.values.get(cond).unwrap().value_ref;
let then_bb = *module.blocks.get(then_b).unwrap();
let else_bb = *module.blocks.get(else_b).unwrap();
LLVMBuildCondBr(module.builder_ref, cond_val, then_bb, else_bb)
}
}
};
LLVMValue { ty, value_ref: val }
}
}
impl IntPredicate {
fn as_llvm(&self, signed: bool) -> LLVMIntPredicate {
use IntPredicate::*;
use LLVMIntPredicate::*;
match (self, signed) {
(LessThan, true) => LLVMIntSLT,
(GreaterThan, true) => LLVMIntSGT,
(LessThan, false) => LLVMIntULT,
(GreaterThan, false) => LLVMIntUGT,
}
}
}
impl ConstValue {
fn as_llvm(&self, context: LLVMContextRef) -> LLVMValueRef {
unsafe {
let t = self.get_type().as_llvm(context);
match *self {
ConstValue::I32(val) => LLVMConstInt(t, val as u64, 1),
ConstValue::U32(val) => LLVMConstInt(t, val as u64, 1),
}
}
}
}
impl Type {
fn as_llvm(&self, context: LLVMContextRef) -> LLVMTypeRef {
unsafe {
match self {
Type::I32 => LLVMInt32TypeInContext(context),
Type::U32 => LLVMInt32TypeInContext(context),
Type::Bool => LLVMInt1TypeInContext(context),
Type::Void => LLVMVoidType(),
}
}
}
}

View File

@ -0,0 +1,230 @@
use std::marker::PhantomData;
use builder::{BlockValue, Builder, FunctionValue, InstructionValue, ModuleValue};
mod builder;
mod compile;
mod util;
// pub struct InstructionValue(BlockValue, usize);
#[derive(Debug)]
pub struct Context {
builder: Builder,
}
impl Context {
pub fn new() -> Context {
Context {
builder: Builder::new(),
}
}
pub fn module<'ctx>(&'ctx self, name: &str) -> Module<'ctx> {
let value = self.builder.add_module(ModuleData {
name: name.to_owned(),
});
Module {
phantom: PhantomData,
builder: self.builder.clone(),
value,
}
}
}
#[derive(Debug, Clone, Hash)]
pub struct ModuleData {
name: String,
}
pub struct Module<'ctx> {
phantom: PhantomData<&'ctx ()>,
builder: Builder,
value: ModuleValue,
}
impl<'ctx> Module<'ctx> {
pub fn function(&mut self, name: &str, ret: Type, params: Vec<Type>) -> Function<'ctx> {
unsafe {
Function {
phantom: PhantomData,
builder: self.builder.clone(),
value: self.builder.add_function(
&self.value,
FunctionData {
name: name.to_owned(),
ret,
params,
},
),
}
}
}
pub fn value(&self) -> ModuleValue {
self.value
}
}
#[derive(Debug, Clone, Hash)]
pub struct FunctionData {
name: String,
ret: Type,
params: Vec<Type>,
}
pub struct Function<'ctx> {
phantom: PhantomData<&'ctx ()>,
builder: Builder,
value: FunctionValue,
}
impl<'ctx> Function<'ctx> {
pub fn block(&mut self, name: &str) -> Block<'ctx> {
unsafe {
Block {
phantom: PhantomData,
builder: self.builder.clone(),
value: self.builder.add_block(
&self.value,
BlockData {
name: name.to_owned(),
terminator: None,
},
),
}
}
}
pub fn value(&self) -> FunctionValue {
self.value
}
}
#[derive(Debug, Clone, Hash)]
pub struct BlockData {
name: String,
terminator: Option<TerminatorKind>,
}
pub struct Block<'builder> {
phantom: PhantomData<&'builder ()>,
builder: Builder,
value: BlockValue,
}
impl<'builder> Block<'builder> {
pub fn build(&mut self, instruction: InstructionKind) -> Result<InstructionValue, ()> {
unsafe {
self.builder
.add_instruction(&self.value, InstructionData { kind: instruction })
}
}
pub fn terminate(&mut self, instruction: TerminatorKind) -> Result<(), ()> {
unsafe { self.builder.terminate(&self.value, instruction) }
}
pub fn value(&self) -> BlockValue {
self.value
}
}
#[derive(Debug, Clone, Hash)]
pub struct InstructionData {
kind: InstructionKind,
}
#[derive(Debug, Clone, Copy, Hash)]
pub enum IntPredicate {
LessThan,
GreaterThan,
}
#[derive(Debug, Clone, Hash)]
pub enum InstructionKind {
Param(usize),
Constant(ConstValue),
Add(InstructionValue, InstructionValue),
Sub(InstructionValue, InstructionValue),
/// Integer Comparison
ICmp(IntPredicate, InstructionValue, InstructionValue),
FunctionCall(FunctionValue, Vec<InstructionValue>),
}
#[derive(Debug, PartialEq, Eq, Clone, Copy, Hash)]
pub enum Type {
I32,
U32,
Bool,
Void,
}
#[derive(Debug, Clone, Hash)]
pub enum ConstValue {
I32(i32),
U32(u32),
}
#[derive(Debug, Clone, Hash)]
pub enum TerminatorKind {
Ret(InstructionValue),
Branch(BlockValue),
CondBr(InstructionValue, BlockValue, BlockValue),
}
fn test() {
use ConstValue::*;
use InstructionKind::*;
let context = Context::new();
let mut module = context.module("test");
let mut main = module.function("main", Type::I32, Vec::new());
let mut m_entry = main.block("entry");
let mut fibonacci = module.function("fibonacci", Type::I32, vec![Type::I32]);
let arg = m_entry.build(Constant(I32(5))).unwrap();
m_entry
.build(FunctionCall(fibonacci.value, vec![arg]))
.unwrap();
let mut f_entry = fibonacci.block("entry");
let num_3 = f_entry.build(Constant(I32(3))).unwrap();
let param_n = f_entry.build(Param(0)).unwrap();
let cond = f_entry
.build(ICmp(IntPredicate::LessThan, param_n, num_3))
.unwrap();
let mut then_b = fibonacci.block("then");
let mut else_b = fibonacci.block("else");
f_entry
.terminate(TerminatorKind::CondBr(cond, then_b.value, else_b.value))
.unwrap();
let ret_const = then_b.build(Constant(I32(1))).unwrap();
then_b.terminate(TerminatorKind::Ret(ret_const)).unwrap();
let const_1 = else_b.build(Constant(I32(1))).unwrap();
let const_2 = else_b.build(Constant(I32(2))).unwrap();
let param_1 = else_b.build(Sub(param_n, const_1)).unwrap();
let param_2 = else_b.build(Sub(param_n, const_2)).unwrap();
let call_1 = else_b
.build(FunctionCall(fibonacci.value, vec![param_1]))
.unwrap();
let call_2 = else_b
.build(FunctionCall(fibonacci.value, vec![param_2]))
.unwrap();
let add = else_b.build(Add(call_1, call_2)).unwrap();
else_b.terminate(TerminatorKind::Ret(add)).unwrap();
dbg!(context);
}

View File

@ -0,0 +1,18 @@
use super::{
Type,
builder::{Builder, InstructionValue},
};
pub fn match_types(
lhs: &InstructionValue,
rhs: &InstructionValue,
builder: &Builder,
) -> Result<Type, ()> {
let lhs_type = lhs.get_type(&builder);
let rhs_type = rhs.get_type(&builder);
if let (Ok(lhs_t), Ok(rhs_t)) = (lhs_type, rhs_type) {
if lhs_t == rhs_t { Ok(lhs_t) } else { Err(()) }
} else {
Err(())
}
}