Compare commits

...

5 Commits

14 changed files with 1250 additions and 1228 deletions

View File

@ -1,105 +1,60 @@
use reid_lib::{
Context, IntPredicate,
types::{BasicType, IntegerValue, Value},
};
use reid_lib::{ConstValue, Context, InstructionKind, IntPredicate, TerminatorKind, Type};
pub fn main() {
// Notes from inkwell:
// - Creating new values should probably just be functions in the context
// - Creating functions should probably be functions from module
// - Builder could well be it's own struct
// - Although, I do like the fact where blocks move the builder by itself..
fn main() {
use ConstValue::*;
use InstructionKind::*;
let context = Context::new();
let module = context.module("testmodule");
let mut module = context.module("test");
let int_32 = context.type_i32();
let main = module.function("main", Type::I32, Vec::new());
let mut m_entry = main.block("entry");
let fibonacci = module.add_function(int_32.function_type(vec![int_32.into()]), "fibonacci");
let mut f_main = fibonacci.block("main");
let fibonacci = module.function("fibonacci", Type::I32, vec![Type::I32]);
let param = fibonacci
.get_param::<IntegerValue>(0, int_32.into())
let arg = m_entry.build(Constant(I32(5))).unwrap();
let fibonacci_call = m_entry
.build(FunctionCall(fibonacci.value(), vec![arg]))
.unwrap();
let mut cmp = f_main
.integer_compare(&param, &int_32.from_unsigned(3), &IntPredicate::ULT, "cmp")
m_entry
.terminate(TerminatorKind::Ret(fibonacci_call))
.unwrap();
let mut done = fibonacci.block("done");
let mut recurse = fibonacci.block("recurse");
f_main.conditional_br(&cmp, &done, &recurse).unwrap();
let mut f_entry = fibonacci.block("entry");
done.ret(&int_32.from_unsigned(1)).unwrap();
let minus_one = recurse
.sub(&param, &int_32.from_unsigned(1), "minus_one")
.unwrap();
let minus_two = recurse
.sub(&param, &int_32.from_unsigned(2), "minus_two")
.unwrap();
let one: IntegerValue = recurse
.call(&fibonacci, vec![Value::Integer(minus_one)], "call_one")
.unwrap();
let two = recurse
.call(&fibonacci, vec![Value::Integer(minus_two)], "call_two")
let num_3 = f_entry.build(Constant(I32(3))).unwrap();
let param_n = f_entry.build(Param(0)).unwrap();
let cond = f_entry
.build(ICmp(IntPredicate::LessThan, param_n, num_3))
.unwrap();
let add = recurse.add(&one, &two, "add").unwrap();
let mut then_b = fibonacci.block("then");
let mut else_b = fibonacci.block("else");
recurse.ret(&add).unwrap();
let main_f = module.add_function(int_32.function_type(Vec::new()), "main");
let mut main_b = main_f.block("main");
let call: IntegerValue = main_b
.call(
&fibonacci,
vec![Value::Integer(int_32.from_unsigned(8))],
"fib_call",
)
f_entry
.terminate(TerminatorKind::CondBr(cond, then_b.value(), else_b.value()))
.unwrap();
main_b.ret(&call).unwrap();
// let secondary = module.add_function(int_32.function_type(&[]), "secondary");
// let s_entry = secondary.block("entry");
// s_entry.ret(&int_32.from_signed(54)).unwrap();
let ret_const = then_b.build(Constant(I32(1))).unwrap();
then_b.terminate(TerminatorKind::Ret(ret_const)).unwrap();
// let function = module.add_function(int_32.function_type(&[]), "main");
let const_1 = else_b.build(Constant(I32(1))).unwrap();
let const_2 = else_b.build(Constant(I32(2))).unwrap();
let param_1 = else_b.build(Sub(param_n, const_1)).unwrap();
let param_2 = else_b.build(Sub(param_n, const_2)).unwrap();
let call_1 = else_b
.build(FunctionCall(fibonacci.value(), vec![param_1]))
.unwrap();
let call_2 = else_b
.build(FunctionCall(fibonacci.value(), vec![param_2]))
.unwrap();
// let entry = function.block("entry");
let add = else_b.build(Add(call_1, call_2)).unwrap();
// let call = entry.call(&secondary, vec![], "call").unwrap();
// let add = entry.add(&int_32.from_signed(100), &call, "add").unwrap();
// let rhs_cmp = int_32.from_signed(200);
else_b.terminate(TerminatorKind::Ret(add)).unwrap();
// let cond_res = entry
// .integer_compare(&add, &rhs_cmp, &IntPredicate::SLT, "cmp")
// .unwrap();
dbg!(&context);
// let (lhs, rhs) = entry.conditional_br(&cond_res, "lhs", "rhs").unwrap();
// let left = lhs.add(&call, &int_32.from_signed(20), "add").unwrap();
// let right = rhs.add(&call, &int_32.from_signed(30), "add").unwrap();
// let final_block = function.block("final");
// let phi = final_block
// .phi::<IntegerValue>(&int_32, "phi")
// .unwrap()
// .add_incoming(&left, &lhs)
// .add_incoming(&right, &rhs)
// .build();
// lhs.br(&final_block).unwrap();
// rhs.br(&final_block).unwrap();
// let val = final_block
// .add(&phi, &int_32.from_signed(11), "add")
// .unwrap();
// final_block.ret(&val).unwrap();
match module.print_to_string() {
Ok(v) => println!("{}", v),
Err(e) => println!("Err: {:?}", e),
}
context.compile();
}

View File

@ -0,0 +1,348 @@
use std::{cell::RefCell, marker::PhantomData, rc::Rc};
use crate::{
BlockData, ConstValue, FunctionData, InstructionData, InstructionKind, ModuleData,
TerminatorKind, Type, util::match_types,
};
#[derive(Debug, Clone, Hash, Copy, PartialEq, Eq)]
pub struct ModuleValue(usize);
#[derive(Debug, Clone, Hash, Copy, PartialEq, Eq)]
pub struct FunctionValue(ModuleValue, usize);
#[derive(Debug, Clone, Hash, Copy, PartialEq, Eq)]
pub struct BlockValue(FunctionValue, usize);
#[derive(Debug, Clone, Hash, Copy, PartialEq, Eq)]
pub struct InstructionValue(pub(crate) BlockValue, usize);
#[derive(Debug, Clone)]
pub struct ModuleHolder {
pub(crate) value: ModuleValue,
pub(crate) data: ModuleData,
pub(crate) functions: Vec<FunctionHolder>,
}
#[derive(Debug, Clone)]
pub struct FunctionHolder {
pub(crate) value: FunctionValue,
pub(crate) data: FunctionData,
pub(crate) blocks: Vec<BlockHolder>,
}
#[derive(Debug, Clone)]
pub struct BlockHolder {
pub(crate) value: BlockValue,
pub(crate) data: BlockData,
pub(crate) instructions: Vec<InstructionHolder>,
}
#[derive(Debug, Clone)]
pub struct InstructionHolder {
pub(crate) value: InstructionValue,
pub(crate) data: InstructionData,
}
#[derive(Debug, Clone)]
pub struct Builder {
modules: Rc<RefCell<Vec<ModuleHolder>>>,
}
impl Builder {
pub fn new() -> Builder {
Builder {
modules: Rc::new(RefCell::new(Vec::new())),
}
}
pub(crate) fn add_module(&self, data: ModuleData) -> ModuleValue {
let value = ModuleValue(self.modules.borrow().len());
self.modules.borrow_mut().push(ModuleHolder {
value,
data,
functions: Vec::new(),
});
value
}
pub(crate) unsafe fn add_function(
&self,
mod_val: &ModuleValue,
data: FunctionData,
) -> FunctionValue {
unsafe {
let mut modules = self.modules.borrow_mut();
let module = modules.get_unchecked_mut(mod_val.0);
let value = FunctionValue(module.value, module.functions.len());
module.functions.push(FunctionHolder {
value,
data,
blocks: Vec::new(),
});
value
}
}
pub(crate) unsafe fn add_block(&self, fun_val: &FunctionValue, data: BlockData) -> BlockValue {
unsafe {
let mut modules = self.modules.borrow_mut();
let module = modules.get_unchecked_mut(fun_val.0.0);
let function = module.functions.get_unchecked_mut(fun_val.1);
let value = BlockValue(function.value, function.blocks.len());
function.blocks.push(BlockHolder {
value,
data,
instructions: Vec::new(),
});
value
}
}
pub(crate) unsafe fn add_instruction(
&self,
block_val: &BlockValue,
data: InstructionData,
) -> Result<InstructionValue, ()> {
unsafe {
let mut modules = self.modules.borrow_mut();
let module = modules.get_unchecked_mut(block_val.0.0.0);
let function = module.functions.get_unchecked_mut(block_val.0.1);
let block = function.blocks.get_unchecked_mut(block_val.1);
let value = InstructionValue(block.value, block.instructions.len());
block.instructions.push(InstructionHolder { value, data });
// Drop modules so that it is no longer mutable borrowed
// (check_instruction requires an immutable borrow).
drop(modules);
self.check_instruction(&value)?;
Ok(value)
}
}
pub(crate) unsafe fn terminate(
&self,
block: &BlockValue,
value: TerminatorKind,
) -> Result<(), ()> {
unsafe {
let mut modules = self.modules.borrow_mut();
let module = modules.get_unchecked_mut(block.0.0.0);
let function = module.functions.get_unchecked_mut(block.0.1);
let block = function.blocks.get_unchecked_mut(block.1);
if let Some(_) = &block.data.terminator {
Err(())
} else {
block.data.terminator = Some(value);
Ok(())
}
}
}
pub(crate) unsafe fn module_data(&self, value: &ModuleValue) -> ModuleData {
unsafe { self.modules.borrow().get_unchecked(value.0).data.clone() }
}
pub(crate) unsafe fn function_data(&self, value: &FunctionValue) -> FunctionData {
unsafe {
self.modules
.borrow()
.get_unchecked(value.0.0)
.functions
.get_unchecked(value.1)
.data
.clone()
}
}
pub(crate) unsafe fn block_data(&self, value: &BlockValue) -> BlockData {
unsafe {
self.modules
.borrow()
.get_unchecked(value.0.0.0)
.functions
.get_unchecked(value.0.1)
.blocks
.get_unchecked(value.1)
.data
.clone()
}
}
pub(crate) unsafe fn instr_data(&self, value: &InstructionValue) -> InstructionData {
unsafe {
self.modules
.borrow()
.get_unchecked(value.0.0.0.0)
.functions
.get_unchecked(value.0.0.1)
.blocks
.get_unchecked(value.0.1)
.instructions
.get_unchecked(value.1)
.data
.clone()
}
}
pub(crate) fn get_modules(&self) -> Rc<RefCell<Vec<ModuleHolder>>> {
self.modules.clone()
}
// pub(crate) fn get_functions(&self, module: ModuleValue) -> Vec<(FunctionValue, FunctionData)> {
// unsafe {
// self.modules
// .borrow()
// .get_unchecked(module.0)
// .2
// .iter()
// .map(|h| (h.0, h.1.clone()))
// .collect()
// }
// }
// pub(crate) fn get_blocks(&self, function: FunctionValue) -> Vec<(BlockValue, BlockData)> {
// unsafe {
// self.modules
// .borrow()
// .get_unchecked(function.0.0)
// .2
// .get_unchecked(function.1)
// .2
// .iter()
// .map(|h| (h.0, h.1.clone()))
// .collect()
// }
// }
// pub(crate) fn get_instructions(
// &self,
// block: BlockValue,
// ) -> (
// Vec<(InstructionValue, InstructionData)>,
// Option<TerminatorKind>,
// ) {
// unsafe {
// let modules = self.modules.borrow();
// let block = modules
// .get_unchecked(block.0.0.0)
// .2
// .get_unchecked(block.0.1)
// .2
// .get_unchecked(block.1);
// (
// block.2.iter().map(|h| (h.0, h.1.clone())).collect(),
// block.1.terminator.clone(),
// )
// }
// }
pub fn check_instruction(&self, instruction: &InstructionValue) -> Result<(), ()> {
use super::InstructionKind::*;
unsafe {
match self.instr_data(&instruction).kind {
Param(_) => Ok(()),
Constant(_) => Ok(()),
Add(lhs, rhs) => match_types(&lhs, &rhs, &self).map(|_| ()),
Sub(lhs, rhs) => match_types(&lhs, &rhs, &self).map(|_| ()),
ICmp(_, lhs, rhs) => {
let t = match_types(&lhs, &rhs, self)?;
if t.comparable() {
Ok(())
} else {
Err(()) // TODO error: Types not comparable
}
}
FunctionCall(fun, params) => {
let param_types = self.function_data(&fun).params;
if param_types.len() != params.len() {
return Err(()); // TODO error: invalid amount of params
}
for (a, b) in param_types.iter().zip(params) {
if *a != b.get_type(&self)? {
return Err(()); // TODO error: params do not match
}
}
Ok(())
}
Phi(vals) => {
let mut iter = vals.iter();
// TODO error: Phi must contain at least one item
let first = iter.next().ok_or(())?;
for item in iter {
match_types(first, item, &self)?;
}
Ok(())
}
}
}
}
}
impl InstructionValue {
pub fn get_type(&self, builder: &Builder) -> Result<Type, ()> {
use InstructionKind::*;
use Type::*;
unsafe {
match &builder.instr_data(self).kind {
Param(nth) => builder
.function_data(&self.0.0)
.params
.get(*nth)
.copied()
.ok_or(()),
Constant(c) => Ok(c.get_type()),
Add(lhs, rhs) => match_types(lhs, rhs, &builder),
Sub(lhs, rhs) => match_types(lhs, rhs, &builder),
ICmp(pred, lhs, rhs) => Ok(Type::Bool),
FunctionCall(function_value, _) => Ok(builder.function_data(function_value).ret),
Phi(values) => values.first().ok_or(()).and_then(|v| v.get_type(&builder)),
}
}
}
}
impl ConstValue {
pub fn get_type(&self) -> Type {
use Type::*;
match self {
ConstValue::I32(_) => I32,
ConstValue::I16(_) => I16,
ConstValue::U32(_) => U32,
}
}
}
impl Type {
pub fn comparable(&self) -> bool {
match self {
Type::I32 => true,
Type::I16 => true,
Type::U32 => true,
Type::Bool => true,
Type::Void => false,
}
}
pub fn signed(&self) -> bool {
match self {
Type::I32 => true,
Type::I16 => true,
Type::U32 => false,
Type::Bool => false,
Type::Void => false,
}
}
}
impl TerminatorKind {
pub fn get_type(&self, builder: &Builder) -> Result<Type, ()> {
use TerminatorKind::*;
match self {
Ret(instr_val) => instr_val.get_type(builder),
Branch(_) => Ok(Type::Void),
CondBr(_, _, _) => Ok(Type::Void),
}
}
}

View File

@ -0,0 +1,386 @@
use std::{collections::HashMap, ffi::CString, hash::Hash, process::Termination, ptr::null_mut};
use llvm_sys::{
LLVMIntPredicate,
analysis::LLVMVerifyModule,
core::*,
prelude::*,
target::{
LLVM_InitializeAllAsmParsers, LLVM_InitializeAllAsmPrinters, LLVM_InitializeAllTargetInfos,
LLVM_InitializeAllTargetMCs, LLVM_InitializeAllTargets, LLVMSetModuleDataLayout,
},
target_machine::{
LLVMCodeGenFileType, LLVMCreateTargetDataLayout, LLVMCreateTargetMachine,
LLVMGetDefaultTargetTriple, LLVMGetTargetFromTriple, LLVMTargetMachineEmitToFile,
},
};
use crate::util::{ErrorMessageHolder, from_cstring, into_cstring};
use super::{
ConstValue, Context, Function, IntPredicate, Module, TerminatorKind, Type,
builder::{
BlockHolder, BlockValue, Builder, FunctionHolder, FunctionValue, InstructionHolder,
InstructionValue, ModuleHolder,
},
};
pub struct LLVMContext {
context_ref: LLVMContextRef,
builder_ref: LLVMBuilderRef,
}
impl Context {
pub fn compile(&self) {
unsafe {
let context_ref = LLVMContextCreate();
let context = LLVMContext {
context_ref,
builder_ref: LLVMCreateBuilderInContext(context_ref),
};
for holder in self.builder.get_modules().borrow().iter() {
holder.compile(&context, &self.builder);
}
LLVMDisposeBuilder(context.builder_ref);
LLVMContextDispose(context.context_ref);
}
}
}
pub struct LLVMModule<'a> {
builder: &'a Builder,
context_ref: LLVMContextRef,
builder_ref: LLVMBuilderRef,
module_ref: LLVMModuleRef,
functions: HashMap<FunctionValue, LLVMFunction>,
blocks: HashMap<BlockValue, LLVMBasicBlockRef>,
values: HashMap<InstructionValue, LLVMValue>,
}
#[derive(Clone, Copy)]
pub struct LLVMFunction {
type_ref: LLVMTypeRef,
value_ref: LLVMValueRef,
}
pub struct LLVMValue {
ty: Type,
value_ref: LLVMValueRef,
}
impl ModuleHolder {
fn compile(&self, context: &LLVMContext, builder: &Builder) {
unsafe {
let module_ref = LLVMModuleCreateWithNameInContext(
into_cstring(&self.data.name).as_ptr(),
context.context_ref,
);
// Compile the contents
let mut functions = HashMap::new();
for function in &self.functions {
functions.insert(
function.value,
function.compile_signature(context, module_ref),
);
}
let mut module = LLVMModule {
builder,
context_ref: context.context_ref,
builder_ref: context.builder_ref,
module_ref,
functions,
blocks: HashMap::new(),
values: HashMap::new(),
};
for function in &self.functions {
function.compile(&mut module);
}
LLVM_InitializeAllTargets();
LLVM_InitializeAllTargetInfos();
LLVM_InitializeAllTargetMCs();
LLVM_InitializeAllAsmParsers();
LLVM_InitializeAllAsmPrinters();
let triple = LLVMGetDefaultTargetTriple();
let mut target: _ = null_mut();
let mut err = ErrorMessageHolder::null();
LLVMGetTargetFromTriple(triple, &mut target, err.borrow_mut());
println!("{:?}, {:?}", from_cstring(triple), target);
err.into_result().unwrap();
let target_machine = LLVMCreateTargetMachine(
target,
triple,
c"generic".as_ptr(),
c"".as_ptr(),
llvm_sys::target_machine::LLVMCodeGenOptLevel::LLVMCodeGenLevelNone,
llvm_sys::target_machine::LLVMRelocMode::LLVMRelocDefault,
llvm_sys::target_machine::LLVMCodeModel::LLVMCodeModelDefault,
);
let data_layout = LLVMCreateTargetDataLayout(target_machine);
LLVMSetTarget(module_ref, triple);
LLVMSetModuleDataLayout(module_ref, data_layout);
let mut err = ErrorMessageHolder::null();
LLVMVerifyModule(
module_ref,
llvm_sys::analysis::LLVMVerifierFailureAction::LLVMPrintMessageAction,
err.borrow_mut(),
);
err.into_result().unwrap();
let mut err = ErrorMessageHolder::null();
LLVMTargetMachineEmitToFile(
target_machine,
module_ref,
CString::new("hello.asm").unwrap().into_raw(),
LLVMCodeGenFileType::LLVMAssemblyFile,
err.borrow_mut(),
);
err.into_result().unwrap();
let mut err = ErrorMessageHolder::null();
LLVMTargetMachineEmitToFile(
target_machine,
module_ref,
CString::new("hello.o").unwrap().into_raw(),
LLVMCodeGenFileType::LLVMObjectFile,
err.borrow_mut(),
);
err.into_result().unwrap();
let module_str = from_cstring(LLVMPrintModuleToString(module_ref));
println!("{}", module_str.unwrap());
}
}
}
impl FunctionHolder {
unsafe fn compile_signature(
&self,
context: &LLVMContext,
module_ref: LLVMModuleRef,
) -> LLVMFunction {
unsafe {
let ret_type = self.data.ret.as_llvm(context.context_ref);
let mut param_types: Vec<LLVMTypeRef> = self
.data
.params
.iter()
.map(|t| t.as_llvm(context.context_ref))
.collect();
let param_ptr = param_types.as_mut_ptr();
let param_len = param_types.len();
let fn_type = LLVMFunctionType(ret_type, param_ptr, param_len as u32, 0);
let function_ref =
LLVMAddFunction(module_ref, into_cstring(&self.data.name).as_ptr(), fn_type);
LLVMFunction {
type_ref: fn_type,
value_ref: function_ref,
}
}
}
unsafe fn compile(&self, module: &mut LLVMModule) {
unsafe {
let own_function = *module.functions.get(&self.value).unwrap();
for block in &self.blocks {
let block_ref = LLVMCreateBasicBlockInContext(
module.context_ref,
into_cstring(&self.data.name).as_ptr(),
);
LLVMAppendExistingBasicBlock(own_function.value_ref, block_ref);
module.blocks.insert(block.value, block_ref);
}
for block in &self.blocks {
block.compile(module, &own_function);
}
}
}
}
impl BlockHolder {
unsafe fn compile(&self, module: &mut LLVMModule, function: &LLVMFunction) {
unsafe {
let block_ref = *module.blocks.get(&self.value).unwrap();
LLVMPositionBuilderAtEnd(module.builder_ref, block_ref);
for instruction in &self.instructions {
let key = instruction.value;
let ret = instruction.compile(module, function, block_ref);
module.values.insert(key, ret);
}
self.data
.terminator
.clone()
.expect(&format!(
"Block {} does not have a terminator!",
self.data.name
))
.compile(module, function, block_ref);
}
}
}
impl InstructionHolder {
unsafe fn compile(
&self,
module: &LLVMModule,
function: &LLVMFunction,
block: LLVMBasicBlockRef,
) -> LLVMValue {
let ty = self.value.get_type(module.builder).unwrap();
let val = unsafe {
use super::InstructionKind::*;
match &self.data.kind {
Param(nth) => LLVMGetParam(function.value_ref, *nth as u32),
Constant(val) => val.as_llvm(module.context_ref),
Add(lhs, rhs) => {
let lhs_val = module.values.get(&lhs).unwrap().value_ref;
let rhs_val = module.values.get(&rhs).unwrap().value_ref;
LLVMBuildAdd(module.builder_ref, lhs_val, rhs_val, c"add".as_ptr())
}
Sub(lhs, rhs) => {
let lhs_val = module.values.get(&lhs).unwrap().value_ref;
let rhs_val = module.values.get(&rhs).unwrap().value_ref;
LLVMBuildSub(module.builder_ref, lhs_val, rhs_val, c"sub".as_ptr())
}
ICmp(pred, lhs, rhs) => {
let lhs_val = module.values.get(&lhs).unwrap().value_ref;
let rhs_val = module.values.get(&rhs).unwrap().value_ref;
LLVMBuildICmp(
module.builder_ref,
pred.as_llvm(ty.signed()),
lhs_val,
rhs_val,
c"icmp".as_ptr(),
)
}
FunctionCall(function_value, instruction_values) => {
let fun = module.functions.get(&function_value).unwrap();
let mut param_list: Vec<LLVMValueRef> = instruction_values
.iter()
.map(|i| module.values.get(i).unwrap().value_ref)
.collect();
LLVMBuildCall2(
module.builder_ref,
fun.type_ref,
fun.value_ref,
param_list.as_mut_ptr(),
param_list.len() as u32,
c"call".as_ptr(),
)
}
Phi(values) => {
let mut inc_values = Vec::new();
let mut inc_blocks = Vec::new();
for item in values {
inc_values.push(module.values.get(&item).unwrap().value_ref);
inc_blocks.push(*module.blocks.get(&item.0).unwrap());
}
let phi = LLVMBuildPhi(
module.builder_ref,
ty.as_llvm(module.context_ref),
c"phi".as_ptr(),
);
LLVMAddIncoming(
phi,
inc_values.as_mut_ptr(),
inc_blocks.as_mut_ptr(),
values.len() as u32,
);
phi
}
}
};
LLVMValue { ty, value_ref: val }
}
}
impl TerminatorKind {
fn compile(
&self,
module: &LLVMModule,
function: &LLVMFunction,
block: LLVMBasicBlockRef,
) -> LLVMValue {
let ty = self.get_type(module.builder).unwrap();
let val = unsafe {
match self {
TerminatorKind::Ret(val) => {
let value = module.values.get(val).unwrap();
LLVMBuildRet(module.builder_ref, value.value_ref)
}
TerminatorKind::Branch(block_value) => {
let dest = *module.blocks.get(block_value).unwrap();
LLVMBuildBr(module.builder_ref, dest)
}
TerminatorKind::CondBr(cond, then_b, else_b) => {
let cond_val = module.values.get(cond).unwrap().value_ref;
let then_bb = *module.blocks.get(then_b).unwrap();
let else_bb = *module.blocks.get(else_b).unwrap();
LLVMBuildCondBr(module.builder_ref, cond_val, then_bb, else_bb)
}
}
};
LLVMValue { ty, value_ref: val }
}
}
impl IntPredicate {
fn as_llvm(&self, signed: bool) -> LLVMIntPredicate {
use IntPredicate::*;
use LLVMIntPredicate::*;
match (self, signed) {
(LessThan, true) => LLVMIntSLT,
(GreaterThan, true) => LLVMIntSGT,
(LessThan, false) => LLVMIntULT,
(GreaterThan, false) => LLVMIntUGT,
}
}
}
impl ConstValue {
fn as_llvm(&self, context: LLVMContextRef) -> LLVMValueRef {
unsafe {
let t = self.get_type().as_llvm(context);
match *self {
ConstValue::I32(val) => LLVMConstInt(t, val as u64, 1),
ConstValue::I16(val) => LLVMConstInt(t, val as u64, 1),
ConstValue::U32(val) => LLVMConstInt(t, val as u64, 0),
}
}
}
}
impl Type {
fn as_llvm(&self, context: LLVMContextRef) -> LLVMTypeRef {
unsafe {
match self {
Type::I32 => LLVMInt32TypeInContext(context),
Type::I16 => LLVMInt16TypeInContext(context),
Type::U32 => LLVMInt32TypeInContext(context),
Type::Bool => LLVMInt1TypeInContext(context),
Type::Void => LLVMVoidType(),
}
}
}
}

View File

@ -1,454 +1,233 @@
use std::ffi::CString;
use std::marker::PhantomData;
use std::net::Incoming;
use std::ptr::null_mut;
use llvm_sys::analysis::LLVMVerifyModule;
use llvm_sys::target::{
LLVM_InitializeAllAsmParsers, LLVM_InitializeAllAsmPrinters, LLVM_InitializeAllTargetInfos,
LLVM_InitializeAllTargetMCs, LLVM_InitializeAllTargets, LLVMSetModuleDataLayout,
};
use llvm_sys::target_machine::{
LLVMCodeGenFileType, LLVMCreateTargetDataLayout, LLVMCreateTargetMachine,
LLVMGetDefaultTargetTriple, LLVMGetTargetFromTriple, LLVMTargetMachineEmitToFile,
};
use llvm_sys::{LLVMBuilder, LLVMContext, LLVMIntPredicate, core::*, prelude::*};
use types::{BasicType, BasicValue, FunctionType, IntegerType, Value};
use util::{ErrorMessageHolder, from_cstring, into_cstring};
use builder::{BlockValue, Builder, FunctionValue, InstructionValue, ModuleValue};
pub mod types;
pub mod builder;
pub mod compile;
mod util;
pub enum IntPredicate {
SLT,
SGT,
ULT,
UGT,
}
impl IntPredicate {
pub fn as_llvm(&self) -> LLVMIntPredicate {
match *self {
Self::SLT => LLVMIntPredicate::LLVMIntSLT,
Self::SGT => LLVMIntPredicate::LLVMIntSGT,
Self::ULT => LLVMIntPredicate::LLVMIntULT,
Self::UGT => LLVMIntPredicate::LLVMIntUGT,
}
}
}
// pub struct InstructionValue(BlockValue, usize);
#[derive(Debug)]
pub struct Context {
pub(crate) context_ref: *mut LLVMContext,
pub(crate) builder_ref: *mut LLVMBuilder,
builder: Builder,
}
impl Context {
pub fn new() -> Context {
unsafe {
// Set up a context, module and builder in that context.
let context = LLVMContextCreate();
let builder = LLVMCreateBuilderInContext(context);
Context {
context_ref: context,
builder_ref: builder,
}
Context {
builder: Builder::new(),
}
}
pub fn type_i1<'a>(&'a self) -> IntegerType<'a> {
IntegerType::in_context(&self, 1)
}
pub fn type_i8<'a>(&'a self) -> IntegerType<'a> {
IntegerType::in_context(&self, 8)
}
pub fn type_i16<'a>(&'a self) -> IntegerType<'a> {
IntegerType::in_context(&self, 16)
}
pub fn type_i32<'a>(&'a self) -> IntegerType<'a> {
IntegerType::in_context(&self, 32)
}
pub fn module(&self, name: &str) -> Module {
Module::with_name(self, name)
pub fn module<'ctx>(&'ctx self, name: &str) -> Module<'ctx> {
let value = self.builder.add_module(ModuleData {
name: name.to_owned(),
});
Module {
phantom: PhantomData,
builder: self.builder.clone(),
value,
}
}
}
impl Drop for Context {
fn drop(&mut self) {
// Clean up. Values created in the context mostly get cleaned up there.
unsafe {
LLVMDisposeBuilder(self.builder_ref);
LLVMContextDispose(self.context_ref);
}
}
#[derive(Debug, Clone, Hash)]
pub struct ModuleData {
name: String,
}
pub struct Module<'ctx> {
context: &'ctx Context,
module_ref: LLVMModuleRef,
name: CString,
phantom: PhantomData<&'ctx ()>,
builder: Builder,
value: ModuleValue,
}
impl<'ctx> Module<'ctx> {
fn with_name(context: &'ctx Context, name: &str) -> Module<'ctx> {
pub fn function(&mut self, name: &str, ret: Type, params: Vec<Type>) -> Function<'ctx> {
unsafe {
let cstring_name = into_cstring(name);
let module_ref =
LLVMModuleCreateWithNameInContext(cstring_name.as_ptr(), context.context_ref);
Module {
context,
module_ref,
name: cstring_name,
}
}
}
pub fn add_function(&'ctx self, fn_type: FunctionType<'ctx>, name: &str) -> Function<'ctx> {
unsafe {
let name_cstring = into_cstring(name);
let function_ref =
LLVMAddFunction(self.module_ref, name_cstring.as_ptr(), fn_type.llvm_type());
Function {
module: self,
fn_type,
name: name_cstring,
fn_ref: function_ref,
phantom: PhantomData,
builder: self.builder.clone(),
value: self.builder.add_function(
&self.value,
FunctionData {
name: name.to_owned(),
ret,
params,
},
),
}
}
}
pub fn print_to_string(&self) -> Result<String, String> {
unsafe {
LLVM_InitializeAllTargets();
LLVM_InitializeAllTargetInfos();
LLVM_InitializeAllTargetMCs();
LLVM_InitializeAllAsmParsers();
LLVM_InitializeAllAsmPrinters();
let triple = LLVMGetDefaultTargetTriple();
let mut target: _ = null_mut();
let mut err = ErrorMessageHolder::null();
LLVMGetTargetFromTriple(triple, &mut target, err.borrow_mut());
println!("{:?}, {:?}", from_cstring(triple), target);
err.into_result().unwrap();
let target_machine = LLVMCreateTargetMachine(
target,
triple,
c"generic".as_ptr(),
c"".as_ptr(),
llvm_sys::target_machine::LLVMCodeGenOptLevel::LLVMCodeGenLevelNone,
llvm_sys::target_machine::LLVMRelocMode::LLVMRelocDefault,
llvm_sys::target_machine::LLVMCodeModel::LLVMCodeModelDefault,
);
let data_layout = LLVMCreateTargetDataLayout(target_machine);
LLVMSetTarget(self.module_ref, triple);
LLVMSetModuleDataLayout(self.module_ref, data_layout);
let mut err = ErrorMessageHolder::null();
LLVMVerifyModule(
self.module_ref,
llvm_sys::analysis::LLVMVerifierFailureAction::LLVMPrintMessageAction,
err.borrow_mut(),
);
err.into_result().unwrap();
let mut err = ErrorMessageHolder::null();
LLVMTargetMachineEmitToFile(
target_machine,
self.module_ref,
CString::new("hello.asm").unwrap().into_raw(),
LLVMCodeGenFileType::LLVMAssemblyFile,
err.borrow_mut(),
);
err.into_result().unwrap();
let mut err = ErrorMessageHolder::null();
LLVMTargetMachineEmitToFile(
target_machine,
self.module_ref,
CString::new("hello.o").unwrap().into_raw(),
LLVMCodeGenFileType::LLVMObjectFile,
err.borrow_mut(),
);
err.into_result().unwrap();
from_cstring(LLVMPrintModuleToString(self.module_ref)).ok_or("UTF-8 error".to_owned())
}
pub fn value(&self) -> ModuleValue {
self.value
}
}
impl<'a> Drop for Module<'a> {
fn drop(&mut self) {
// Clean up. Values created in the context mostly get cleaned up there.
unsafe {
LLVMDisposeModule(self.module_ref);
}
}
#[derive(Debug, Clone, Hash)]
pub struct FunctionData {
name: String,
ret: Type,
params: Vec<Type>,
}
#[derive(Clone)]
pub struct Function<'ctx> {
module: &'ctx Module<'ctx>,
name: CString,
fn_type: FunctionType<'ctx>,
fn_ref: LLVMValueRef,
phantom: PhantomData<&'ctx ()>,
builder: Builder,
value: FunctionValue,
}
impl<'ctx> Function<'ctx> {
pub fn block<T: Into<String>>(&'ctx self, name: T) -> BasicBlock<'ctx> {
BasicBlock::in_function(&self, name.into())
pub fn block(&self, name: &str) -> Block<'ctx> {
unsafe {
Block {
phantom: PhantomData,
builder: self.builder.clone(),
value: self.builder.add_block(
&self.value,
BlockData {
name: name.to_owned(),
terminator: None,
},
),
}
}
}
pub fn get_param<T: BasicValue<'ctx>>(
&'ctx self,
nth: usize,
param_type: T::BaseType,
) -> Result<T, String> {
if let Some(actual_type) = self.fn_type.param_types.iter().nth(nth) {
if param_type.llvm_type() != *actual_type {
return Err(String::from("Wrong type"));
}
} else {
return Err(String::from("nth too large"));
}
unsafe { Ok(T::from_llvm(LLVMGetParam(self.fn_ref, nth as u32))) }
pub fn value(&self) -> FunctionValue {
self.value
}
}
pub struct BasicBlock<'ctx> {
function: &'ctx Function<'ctx>,
builder_ref: LLVMBuilderRef,
#[derive(Debug, Clone, Hash)]
pub struct BlockData {
name: String,
blockref: LLVMBasicBlockRef,
inserted: bool,
terminator: Option<TerminatorKind>,
}
impl<'ctx> BasicBlock<'ctx> {
fn in_function(function: &'ctx Function<'ctx>, name: String) -> BasicBlock<'ctx> {
pub struct Block<'builder> {
phantom: PhantomData<&'builder ()>,
builder: Builder,
value: BlockValue,
}
impl<'builder> Block<'builder> {
pub fn build(&mut self, instruction: InstructionKind) -> Result<InstructionValue, ()> {
unsafe {
let block_name = into_cstring(name.clone());
let block_ref = LLVMCreateBasicBlockInContext(
function.module.context.context_ref,
block_name.as_ptr(),
);
LLVMAppendExistingBasicBlock(function.fn_ref, block_ref);
BasicBlock {
function: function,
builder_ref: function.module.context.builder_ref,
name,
blockref: block_ref,
inserted: false,
}
self.builder
.add_instruction(&self.value, InstructionData { kind: instruction })
}
}
#[must_use]
pub fn integer_compare<T: BasicValue<'ctx>>(
&self,
lhs: &T,
rhs: &T,
comparison: &IntPredicate,
name: &str,
) -> Result<T, ()> {
unsafe {
LLVMPositionBuilderAtEnd(self.builder_ref, self.blockref);
let value = LLVMBuildICmp(
self.builder_ref,
comparison.as_llvm(),
lhs.llvm_value(),
rhs.llvm_value(),
into_cstring(name).as_ptr(),
);
Ok(T::from_llvm(value))
}
pub fn terminate(&mut self, instruction: TerminatorKind) -> Result<(), ()> {
unsafe { self.builder.terminate(&self.value, instruction) }
}
#[must_use]
pub fn call<T: BasicValue<'ctx>>(
&self,
callee: &Function<'ctx>,
params: Vec<Value<'ctx>>,
name: &str,
) -> Result<T, ()> {
if params.len() != callee.fn_type.param_types.len() {
return Err(()); // TODO invalid amount of parameters
}
for (t1, t2) in callee.fn_type.param_types.iter().zip(&params) {
if t1 != &t2.llvm_type() {
return Err(()); // TODO wrong types in parameters
}
}
if !T::BaseType::is_type(callee.fn_type.return_type) {
return Err(()); // TODO wrong return type
}
unsafe {
let mut param_list: Vec<LLVMValueRef> = params.iter().map(|p| p.llvm_value()).collect();
LLVMPositionBuilderAtEnd(self.builder_ref, self.blockref);
let ret_val = LLVMBuildCall2(
self.builder_ref,
callee.fn_type.llvm_type(),
callee.fn_ref,
param_list.as_mut_ptr(),
param_list.len() as u32,
into_cstring(name).as_ptr(),
);
Ok(T::from_llvm(ret_val))
}
}
#[must_use]
pub fn add<T: BasicValue<'ctx>>(&self, lhs: &T, rhs: &T, name: &str) -> Result<T, ()> {
if lhs.llvm_type() != rhs.llvm_type() {
return Err(()); // TODO error
}
unsafe {
LLVMPositionBuilderAtEnd(self.builder_ref, self.blockref);
let add_value_ref = LLVMBuildAdd(
self.builder_ref,
lhs.llvm_value(),
rhs.llvm_value(),
into_cstring(name).as_ptr(),
);
Ok(T::from_llvm(add_value_ref))
}
}
#[must_use]
pub fn sub<T: BasicValue<'ctx>>(&self, lhs: &T, rhs: &T, name: &str) -> Result<T, ()> {
dbg!(lhs, rhs);
dbg!(lhs.llvm_type(), rhs.llvm_type());
if lhs.llvm_type() != rhs.llvm_type() {
return Err(()); // TODO error
}
unsafe {
LLVMPositionBuilderAtEnd(self.builder_ref, self.blockref);
let add_value_ref = LLVMBuildSub(
self.builder_ref,
lhs.llvm_value(),
rhs.llvm_value(),
into_cstring(name).as_ptr(),
);
Ok(T::from_llvm(add_value_ref))
}
}
#[must_use]
pub fn phi<PhiValue: BasicValue<'ctx>>(
&self,
phi_type: &PhiValue::BaseType,
name: &str,
) -> Result<PhiBuilder<'ctx, PhiValue>, ()> {
unsafe {
LLVMPositionBuilderAtEnd(self.builder_ref, self.blockref);
let phi_node = LLVMBuildPhi(
self.builder_ref,
phi_type.llvm_type(),
into_cstring(name).as_ptr(),
);
Ok(PhiBuilder::new(phi_node))
}
}
#[must_use]
pub fn br(&mut self, into: &BasicBlock<'ctx>) -> Result<(), ()> {
self.try_insert()?;
unsafe {
LLVMPositionBuilderAtEnd(self.builder_ref, self.blockref);
LLVMBuildBr(self.builder_ref, into.blockref);
Ok(())
}
}
#[must_use]
pub fn conditional_br<T: BasicValue<'ctx>>(
&mut self,
condition: &T,
lhs: &BasicBlock<'ctx>,
rhs: &BasicBlock<'ctx>,
) -> Result<(), ()> {
self.try_insert()?;
unsafe {
LLVMPositionBuilderAtEnd(self.builder_ref, self.blockref);
LLVMBuildCondBr(
self.builder_ref,
condition.llvm_value(),
lhs.blockref,
rhs.blockref,
);
Ok(())
}
}
#[must_use]
pub fn ret<T: BasicValue<'ctx>>(&mut self, return_value: &T) -> Result<(), ()> {
if self.function.fn_type.return_type != return_value.llvm_type() {
return Err(());
}
self.try_insert()?;
unsafe {
LLVMPositionBuilderAtEnd(self.builder_ref, self.blockref);
LLVMBuildRet(self.builder_ref, return_value.llvm_value());
Ok(())
}
}
fn try_insert(&mut self) -> Result<(), ()> {
if self.inserted {
return Err(());
}
self.inserted = true;
Ok(())
pub fn value(&self) -> BlockValue {
self.value
}
}
impl<'ctx> Drop for BasicBlock<'ctx> {
fn drop(&mut self) {
if !self.inserted {
unsafe {
LLVMDeleteBasicBlock(self.blockref);
}
}
}
#[derive(Debug, Clone, Hash)]
pub struct InstructionData {
kind: InstructionKind,
}
pub struct PhiBuilder<'ctx, PhiValue: BasicValue<'ctx>> {
phi_node: LLVMValueRef,
phantom: PhantomData<&'ctx PhiValue>,
#[derive(Debug, Clone, Copy, Hash)]
pub enum IntPredicate {
LessThan,
GreaterThan,
}
impl<'ctx, PhiValue: BasicValue<'ctx>> PhiBuilder<'ctx, PhiValue> {
fn new(phi_node: LLVMValueRef) -> PhiBuilder<'ctx, PhiValue> {
PhiBuilder {
phi_node,
phantom: PhantomData,
}
}
#[derive(Debug, Clone, Hash)]
pub enum InstructionKind {
Param(usize),
Constant(ConstValue),
Add(InstructionValue, InstructionValue),
Sub(InstructionValue, InstructionValue),
Phi(Vec<InstructionValue>),
pub fn add_incoming(&self, value: &PhiValue, block: &BasicBlock<'ctx>) -> &Self {
let mut values = vec![value.llvm_value()];
let mut blocks = vec![block.blockref];
unsafe {
LLVMAddIncoming(
self.phi_node,
values.as_mut_ptr(),
blocks.as_mut_ptr(),
values.len() as u32,
);
self
}
}
/// Integer Comparison
ICmp(IntPredicate, InstructionValue, InstructionValue),
pub fn build(&self) -> PhiValue {
unsafe { PhiValue::from_llvm(self.phi_node) }
}
FunctionCall(FunctionValue, Vec<InstructionValue>),
}
#[derive(Debug, PartialEq, Eq, Clone, Copy, Hash)]
pub enum Type {
I32,
I16,
U32,
Bool,
Void,
}
#[derive(Debug, Clone, Hash)]
pub enum ConstValue {
I32(i32),
I16(i16),
U32(u32),
}
#[derive(Debug, Clone, Hash)]
pub enum TerminatorKind {
Ret(InstructionValue),
Branch(BlockValue),
CondBr(InstructionValue, BlockValue, BlockValue),
}
fn test() {
use ConstValue::*;
use InstructionKind::*;
let context = Context::new();
let mut module = context.module("test");
let mut main = module.function("main", Type::I32, Vec::new());
let mut m_entry = main.block("entry");
let mut fibonacci = module.function("fibonacci", Type::I32, vec![Type::I32]);
let arg = m_entry.build(Constant(I32(5))).unwrap();
m_entry
.build(FunctionCall(fibonacci.value, vec![arg]))
.unwrap();
let mut f_entry = fibonacci.block("entry");
let num_3 = f_entry.build(Constant(I32(3))).unwrap();
let param_n = f_entry.build(Param(0)).unwrap();
let cond = f_entry
.build(ICmp(IntPredicate::LessThan, param_n, num_3))
.unwrap();
let mut then_b = fibonacci.block("then");
let mut else_b = fibonacci.block("else");
f_entry
.terminate(TerminatorKind::CondBr(cond, then_b.value, else_b.value))
.unwrap();
let ret_const = then_b.build(Constant(I32(1))).unwrap();
then_b.terminate(TerminatorKind::Ret(ret_const)).unwrap();
let const_1 = else_b.build(Constant(I32(1))).unwrap();
let const_2 = else_b.build(Constant(I32(2))).unwrap();
let param_1 = else_b.build(Sub(param_n, const_1)).unwrap();
let param_2 = else_b.build(Sub(param_n, const_2)).unwrap();
let call_1 = else_b
.build(FunctionCall(fibonacci.value, vec![param_1]))
.unwrap();
let call_2 = else_b
.build(FunctionCall(fibonacci.value, vec![param_2]))
.unwrap();
let add = else_b.build(Add(call_1, call_2)).unwrap();
else_b.terminate(TerminatorKind::Ret(add)).unwrap();
dbg!(context);
}

View File

@ -1,336 +0,0 @@
use std::{any::Any, marker::PhantomData, ptr::null_mut};
use llvm_sys::{
LLVMTypeKind,
core::*,
prelude::{LLVMTypeRef, LLVMValueRef},
};
use crate::{BasicBlock, Context, PhiBuilder};
pub trait BasicType<'ctx> {
fn llvm_type(&self) -> LLVMTypeRef;
fn is_type(llvm_type: LLVMTypeRef) -> bool
where
Self: Sized;
unsafe fn from_llvm(context: &'ctx Context, llvm_type: LLVMTypeRef) -> Self
where
Self: Sized;
fn function_type(&self, params: Vec<TypeEnum>) -> FunctionType<'ctx> {
unsafe {
let mut typerefs: Vec<LLVMTypeRef> = params.iter().map(|b| b.llvm_type()).collect();
let param_ptr = typerefs.as_mut_ptr();
let param_len = typerefs.len();
FunctionType {
phantom: PhantomData,
return_type: self.llvm_type(),
param_types: typerefs,
type_ref: LLVMFunctionType(self.llvm_type(), param_ptr, param_len as u32, 0),
}
}
}
fn array_type(&'ctx self, length: u32) -> ArrayType<'ctx>
where
Self: Sized,
{
ArrayType {
phantom: PhantomData,
element_type: self.llvm_type(),
length,
type_ref: unsafe { LLVMArrayType(self.llvm_type(), length) },
}
}
}
impl<'ctx> PartialEq for &dyn BasicType<'ctx> {
fn eq(&self, other: &Self) -> bool {
self.llvm_type() == other.llvm_type()
}
}
impl<'ctx> PartialEq<LLVMTypeRef> for &dyn BasicType<'ctx> {
fn eq(&self, other: &LLVMTypeRef) -> bool {
self.llvm_type() == *other
}
}
#[derive(Clone, Copy)]
pub struct IntegerType<'ctx> {
context: &'ctx Context,
type_ref: LLVMTypeRef,
}
impl<'ctx> BasicType<'ctx> for IntegerType<'ctx> {
fn llvm_type(&self) -> LLVMTypeRef {
self.type_ref
}
unsafe fn from_llvm(context: &'ctx Context, llvm_type: LLVMTypeRef) -> Self
where
Self: Sized,
{
IntegerType {
context,
type_ref: llvm_type,
}
}
fn is_type(llvm_type: LLVMTypeRef) -> bool {
unsafe { LLVMGetTypeKind(llvm_type) == LLVMTypeKind::LLVMIntegerTypeKind }
}
}
impl<'ctx> IntegerType<'ctx> {
pub(crate) fn in_context(context: &Context, width: u32) -> IntegerType {
let type_ref = unsafe {
match width {
128 => LLVMInt128TypeInContext(context.context_ref),
64 => LLVMInt64TypeInContext(context.context_ref),
32 => LLVMInt32TypeInContext(context.context_ref),
16 => LLVMInt16TypeInContext(context.context_ref),
8 => LLVMInt8TypeInContext(context.context_ref),
1 => LLVMInt1TypeInContext(context.context_ref),
_ => LLVMIntTypeInContext(context.context_ref, width),
}
};
IntegerType { context, type_ref }
}
pub fn from_signed(&self, value: i64) -> IntegerValue<'ctx> {
self.from_const(value as u64, true)
}
pub fn from_unsigned(&self, value: i64) -> IntegerValue<'ctx> {
self.from_const(value as u64, false)
}
fn from_const(&self, value: u64, sign: bool) -> IntegerValue<'ctx> {
unsafe {
IntegerValue::from_llvm(LLVMConstInt(
self.type_ref,
value,
match sign {
true => 1,
false => 0,
},
))
}
}
}
#[derive(Clone)]
pub struct FunctionType<'ctx> {
phantom: PhantomData<&'ctx ()>,
pub(crate) return_type: LLVMTypeRef,
pub(crate) param_types: Vec<LLVMTypeRef>,
type_ref: LLVMTypeRef,
}
impl<'ctx> BasicType<'ctx> for FunctionType<'ctx> {
fn llvm_type(&self) -> LLVMTypeRef {
self.type_ref
}
unsafe fn from_llvm(_context: &'ctx Context, fn_type: LLVMTypeRef) -> Self
where
Self: Sized,
{
unsafe {
let param_count = LLVMCountParamTypes(fn_type);
let param_types_ptr: *mut LLVMTypeRef = null_mut();
LLVMGetParamTypes(fn_type, param_types_ptr);
let param_types: Vec<LLVMTypeRef> =
std::slice::from_raw_parts(param_types_ptr, param_count as usize)
.iter()
.map(|t| *t)
.collect();
FunctionType {
phantom: PhantomData,
return_type: LLVMGetReturnType(fn_type),
param_types,
type_ref: fn_type,
}
}
}
fn is_type(llvm_type: LLVMTypeRef) -> bool {
unsafe { LLVMGetTypeKind(llvm_type) == LLVMTypeKind::LLVMFunctionTypeKind }
}
}
#[derive(Clone, Copy)]
pub struct ArrayType<'ctx> {
phantom: PhantomData<&'ctx ()>,
element_type: LLVMTypeRef,
length: u32,
type_ref: LLVMTypeRef,
}
impl<'ctx> BasicType<'ctx> for ArrayType<'ctx> {
fn llvm_type(&self) -> LLVMTypeRef {
self.type_ref
}
unsafe fn from_llvm(context: &'ctx Context, llvm_type: LLVMTypeRef) -> Self
where
Self: Sized,
{
unsafe {
let length = LLVMGetArrayLength(llvm_type);
todo!()
}
}
fn is_type(llvm_type: LLVMTypeRef) -> bool {
unsafe { LLVMGetTypeKind(llvm_type) == LLVMTypeKind::LLVMArrayTypeKind }
}
}
#[derive(Clone)]
pub enum TypeEnum<'ctx> {
Integer(IntegerType<'ctx>),
Array(ArrayType<'ctx>),
Function(FunctionType<'ctx>),
}
impl<'ctx> From<IntegerType<'ctx>> for TypeEnum<'ctx> {
fn from(int: IntegerType<'ctx>) -> Self {
TypeEnum::Integer(int)
}
}
impl<'ctx> From<ArrayType<'ctx>> for TypeEnum<'ctx> {
fn from(arr: ArrayType<'ctx>) -> Self {
TypeEnum::Array(arr)
}
}
impl<'ctx> From<FunctionType<'ctx>> for TypeEnum<'ctx> {
fn from(func: FunctionType<'ctx>) -> Self {
TypeEnum::Function(func)
}
}
impl<'ctx> TypeEnum<'ctx> {
fn inner_basic(&'ctx self) -> &'ctx dyn BasicType<'ctx> {
match self {
TypeEnum::Integer(integer_type) => integer_type,
TypeEnum::Array(array_type) => array_type,
TypeEnum::Function(function_type) => function_type,
}
}
}
impl<'ctx> BasicType<'ctx> for TypeEnum<'ctx> {
fn llvm_type(&self) -> LLVMTypeRef {
self.inner_basic().llvm_type()
}
fn is_type(llvm_type: LLVMTypeRef) -> bool
where
Self: Sized,
{
true
}
unsafe fn from_llvm(context: &'ctx Context, llvm_type: LLVMTypeRef) -> Self
where
Self: Sized,
{
unsafe {
match LLVMGetTypeKind(llvm_type) {
LLVMTypeKind::LLVMIntegerTypeKind => {
TypeEnum::Integer(IntegerType::from_llvm(context, llvm_type))
}
LLVMTypeKind::LLVMArrayTypeKind => {
TypeEnum::Array(ArrayType::from_llvm(context, llvm_type))
}
LLVMTypeKind::LLVMFunctionTypeKind => {
TypeEnum::Function(FunctionType::from_llvm(context, llvm_type))
}
_ => todo!(),
}
}
}
}
pub trait BasicValue<'ctx>: std::fmt::Debug {
type BaseType: BasicType<'ctx>;
unsafe fn from_llvm(value: LLVMValueRef) -> Self
where
Self: Sized;
fn llvm_value(&self) -> LLVMValueRef;
fn llvm_type(&self) -> LLVMTypeRef;
}
#[derive(Clone, Debug)]
pub struct IntegerValue<'ctx> {
phantom: PhantomData<&'ctx ()>,
pub(crate) value_ref: LLVMValueRef,
}
impl<'ctx> BasicValue<'ctx> for IntegerValue<'ctx> {
type BaseType = IntegerType<'ctx>;
unsafe fn from_llvm(value: LLVMValueRef) -> Self {
IntegerValue {
phantom: PhantomData,
value_ref: value,
}
}
fn llvm_value(&self) -> LLVMValueRef {
self.value_ref
}
fn llvm_type(&self) -> LLVMTypeRef {
unsafe { LLVMTypeOf(self.value_ref) }
}
}
#[derive(Clone, Debug)]
pub enum Value<'ctx> {
Integer(IntegerValue<'ctx>),
}
impl<'ctx> BasicValue<'ctx> for Value<'ctx> {
type BaseType = TypeEnum<'ctx>;
unsafe fn from_llvm(value: LLVMValueRef) -> Self
where
Self: Sized,
{
unsafe {
use LLVMTypeKind::*;
let llvm_type = LLVMTypeOf(value);
let type_kind = LLVMGetTypeKind(llvm_type);
match type_kind {
LLVMIntegerTypeKind => Value::Integer(IntegerValue::from_llvm(value)),
_ => panic!("asd"),
}
}
}
fn llvm_value(&self) -> LLVMValueRef {
match self {
Self::Integer(i) => i.llvm_value(),
}
}
fn llvm_type(&self) -> LLVMTypeRef {
match self {
Self::Integer(i) => i.llvm_type(),
}
}
}
impl<'ctx> From<IntegerValue<'ctx>> for Value<'ctx> {
fn from(value: IntegerValue<'ctx>) -> Self {
Value::Integer(value)
}
}

View File

@ -5,6 +5,11 @@ use std::{
use llvm_sys::error::LLVMDisposeErrorMessage;
use crate::{
Type,
builder::{Builder, InstructionValue},
};
pub fn into_cstring<T: Into<String>>(value: T) -> CString {
let string = value.into();
unsafe { CString::from_vec_with_nul_unchecked((string + "\0").into_bytes()) }
@ -49,3 +54,17 @@ impl Drop for ErrorMessageHolder {
}
}
}
pub fn match_types(
lhs: &InstructionValue,
rhs: &InstructionValue,
builder: &Builder,
) -> Result<Type, ()> {
let lhs_type = lhs.get_type(&builder);
let rhs_type = rhs.get_type(&builder);
if let (Ok(lhs_t), Ok(rhs_t)) = (lhs_type, rhs_type) {
if lhs_t == rhs_t { Ok(lhs_t) } else { Err(()) }
} else {
Err(())
}
}

View File

@ -1,6 +1,6 @@
// Main
fn main() {
return fibonacci(10);
return fibonacci(3);
}
// Fibonacci

View File

@ -164,8 +164,9 @@ fn main() {
println!("test3");
match codegen_module.module.print_to_string() {
Ok(v) => println!("{}", v),
Err(e) => println!("Err: {:?}", e),
}
codegen_module.context.compile();
// match codegen_module.module.print_to_string() {
// Ok(v) => println!("{}", v),
// Err(e) => println!("Err: {:?}", e),
// }
}

View File

@ -28,47 +28,50 @@ impl Parse for Type {
impl Parse for Expression {
fn parse(mut stream: TokenStream) -> Result<Expression, Error> {
let lhs = parse_primary_expression(&mut stream)?;
let lhs = stream.parse::<PrimaryExpression>()?.0;
parse_binop_rhs(&mut stream, lhs, None)
}
}
fn parse_primary_expression(stream: &mut TokenStream) -> Result<Expression, Error> {
use ExpressionKind as Kind;
#[derive(Debug)]
pub struct PrimaryExpression(Expression);
if let Ok(exp) = stream.parse() {
Ok(Expression(
Kind::FunctionCall(Box::new(exp)),
stream.get_range().unwrap(),
))
} else if let Ok(block) = stream.parse() {
Ok(Expression(
Kind::BlockExpr(Box::new(block)),
stream.get_range().unwrap(),
))
} else if let Ok(ifexpr) = stream.parse() {
Ok(Expression(
Kind::IfExpr(Box::new(ifexpr)),
stream.get_range().unwrap(),
))
} else if let Some(token) = stream.next() {
Ok(match &token {
Token::Identifier(v) => {
Expression(Kind::VariableName(v.clone()), stream.get_range().unwrap())
}
Token::DecimalValue(v) => Expression(
Kind::Literal(Literal::I32(v.parse().unwrap())),
impl Parse for PrimaryExpression {
fn parse(mut stream: TokenStream) -> Result<Self, Error> {
use ExpressionKind as Kind;
let expr = if let Ok(exp) = stream.parse() {
Expression(
Kind::FunctionCall(Box::new(exp)),
stream.get_range().unwrap(),
),
Token::ParenOpen => {
let exp = stream.parse()?;
stream.expect(Token::ParenClose)?;
exp
)
} else if let Ok(block) = stream.parse() {
Expression(
Kind::BlockExpr(Box::new(block)),
stream.get_range().unwrap(),
)
} else if let Ok(ifexpr) = stream.parse() {
Expression(Kind::IfExpr(Box::new(ifexpr)), stream.get_range().unwrap())
} else if let Some(token) = stream.next() {
match &token {
Token::Identifier(v) => {
Expression(Kind::VariableName(v.clone()), stream.get_range().unwrap())
}
Token::DecimalValue(v) => Expression(
Kind::Literal(Literal::I32(v.parse().unwrap())),
stream.get_range().unwrap(),
),
Token::ParenOpen => {
let exp = stream.parse()?;
stream.expect(Token::ParenClose)?;
exp
}
_ => Err(stream.expected_err("identifier, constant or parentheses")?)?,
}
_ => Err(stream.expected_err("identifier, constant or parentheses")?)?,
})
} else {
Err(stream.expected_err("expression")?)?
} else {
Err(stream.expected_err("expression")?)?
};
Ok(PrimaryExpression(expr))
}
}
@ -95,7 +98,7 @@ fn parse_binop_rhs(
stream.parse_if::<BinaryOperator, _>(|b| b.get_precedence() >= expr_precedence)
{
let curr_token_prec = op.get_precedence();
let mut rhs = parse_primary_expression(stream)?;
let mut rhs = stream.parse::<PrimaryExpression>()?.0;
if let Ok(next_op) = stream.parse_peek::<BinaryOperator>() {
let next_prec = next_op.get_precedence();

View File

@ -3,93 +3,50 @@ use std::collections::HashMap;
use crate::{
ast,
mir::{self, StmtKind, VariableReference},
token_stream::TokenRange,
};
#[derive(Clone)]
pub enum InferredType {
FromVariable(String, TokenRange),
FunctionReturn(String, TokenRange),
Static(mir::TypeKind, TokenRange),
FromVariable(String),
FunctionReturn(String),
Static(mir::TypeKind),
OneOf(Vec<InferredType>),
Void(TokenRange),
DownstreamError(IntoMIRError, TokenRange),
}
fn all_ok<T, E>(result: Vec<Result<T, E>>) -> Option<Vec<T>> {
let mut res = Vec::with_capacity(result.len());
for item in result {
if let Ok(item) = item {
res.push(item);
} else {
return None;
}
}
Some(res)
Void,
}
impl InferredType {
fn collapse(
&self,
state: &mut State,
scope: &VirtualScope,
) -> Result<mir::TypeKind, IntoMIRError> {
fn collapse(&self, scope: &VirtualScope) -> mir::TypeKind {
match self {
InferredType::FromVariable(name, token_range) => {
InferredType::FromVariable(name) => {
if let Some(inferred) = scope.get_var(name) {
let temp = inferred.collapse(state, scope);
state.note(temp)
inferred.collapse(scope)
} else {
state.err(IntoMIRError::VariableNotDefined(name.clone(), *token_range))
mir::TypeKind::Vague(mir::VagueType::Unknown)
}
}
InferredType::FunctionReturn(name, token_range) => {
InferredType::FunctionReturn(name) => {
if let Some(type_kind) = scope.get_return_type(name) {
Ok(*type_kind)
type_kind.clone()
} else {
state.err(IntoMIRError::VariableNotDefined(name.clone(), *token_range))
mir::TypeKind::Vague(mir::VagueType::Unknown)
}
}
InferredType::Static(type_kind, _) => Ok(*type_kind),
InferredType::Static(type_kind) => type_kind.clone(),
InferredType::OneOf(inferred_types) => {
let collapsed = all_ok(
inferred_types
.iter()
.map(|t| {
let temp = t.collapse(state, scope);
state.note(temp)
})
.collect(),
);
if let Some(list) = collapsed {
if let Some(first) = list.first() {
if list.iter().all(|i| i == first) {
Ok((*first).into())
} else {
state.err(IntoMIRError::ConflictingType(self.get_range()))
}
let list: Vec<mir::TypeKind> =
inferred_types.iter().map(|t| t.collapse(scope)).collect();
if let Some(first) = list.first() {
if list.iter().all(|i| i == first) {
first.clone().into()
} else {
state.err(IntoMIRError::VoidType(self.get_range()))
// IntoMIRError::ConflictingType(self.get_range())
mir::TypeKind::Void
}
} else {
state.err(IntoMIRError::DownstreamError(self.get_range()))
mir::TypeKind::Void
}
}
InferredType::Void(token_range) => state.err(IntoMIRError::VoidType(*token_range)),
InferredType::DownstreamError(e, _) => state.err(e.clone()),
}
}
fn get_range(&self) -> TokenRange {
match &self {
InferredType::FromVariable(_, token_range) => *token_range,
InferredType::FunctionReturn(_, token_range) => *token_range,
InferredType::Static(_, token_range) => *token_range,
InferredType::OneOf(inferred_types) => {
inferred_types.iter().map(|i| i.get_range()).sum()
}
InferredType::Void(token_range) => *token_range,
InferredType::DownstreamError(_, range) => *range,
InferredType::Void => mir::TypeKind::Void,
}
}
}
@ -97,18 +54,12 @@ impl InferredType {
pub struct VirtualVariable {
name: String,
inferred: InferredType,
meta: mir::Metadata,
}
pub struct VirtualFunctionSignature {
name: String,
return_type: mir::TypeKind,
parameter_types: Vec<mir::TypeKind>,
metadata: mir::Metadata,
}
pub enum VirtualStorageError {
KeyAlreadyExists(String),
}
pub struct VirtualStorage<T> {
@ -116,24 +67,16 @@ pub struct VirtualStorage<T> {
}
impl<T> VirtualStorage<T> {
fn set(&mut self, name: String, value: T) -> Result<(), VirtualStorageError> {
let result = if let Some(list) = self.storage.get_mut(&name) {
fn set(&mut self, name: String, value: T) {
if let Some(list) = self.storage.get_mut(&name) {
list.push(value);
Err(VirtualStorageError::KeyAlreadyExists(name.clone()))
} else {
self.storage.insert(name, vec![value]);
Ok(())
};
result
}
fn get(&self, name: &String) -> Option<&T> {
if let Some(list) = self.storage.get(name) {
list.first()
} else {
None
}
fn get(&self, name: &String) -> Option<&Vec<T>> {
self.storage.get(name)
}
}
@ -145,49 +88,44 @@ impl<T> Default for VirtualStorage<T> {
}
}
#[derive(Clone, Debug)]
pub enum IntoMIRError {
DuplicateVariable(String, TokenRange),
DuplicateFunction(String, TokenRange),
VariableNotDefined(String, TokenRange),
FunctionNotDefined(String, TokenRange),
DownstreamError(TokenRange),
ConflictingType(TokenRange),
VoidType(TokenRange),
}
pub struct VirtualScope {
variables: VirtualStorage<VirtualVariable>,
functions: VirtualStorage<VirtualFunctionSignature>,
}
impl VirtualScope {
pub fn set_var(&mut self, variable: VirtualVariable) -> Result<(), IntoMIRError> {
let range = variable.meta.range;
match self.variables.set(variable.name.clone(), variable) {
Ok(_) => Ok(()),
Err(VirtualStorageError::KeyAlreadyExists(n)) => {
Err(IntoMIRError::DuplicateVariable(n, range))
pub fn set_var(&mut self, variable: VirtualVariable) {
self.variables.set(variable.name.clone(), variable);
}
pub fn set_fun(&mut self, function: VirtualFunctionSignature) {
self.functions.set(function.name.clone(), function)
}
pub fn get_var(&self, name: &String) -> Option<InferredType> {
self.variables.get(name).and_then(|v| {
if v.len() > 1 {
Some(InferredType::OneOf(
v.iter().map(|v| v.inferred.clone()).collect(),
))
} else if let Some(v) = v.first() {
Some(v.inferred.clone())
} else {
None
}
}
})
}
pub fn set_fun(&mut self, function: VirtualFunctionSignature) -> Result<(), IntoMIRError> {
let range = function.metadata.range;
match self.functions.set(function.name.clone(), function) {
Ok(_) => Ok(()),
Err(VirtualStorageError::KeyAlreadyExists(n)) => {
Err(IntoMIRError::DuplicateVariable(n, range))
pub fn get_return_type(&self, name: &String) -> Option<mir::TypeKind> {
self.functions.get(name).and_then(|v| {
if v.len() > 1 {
Some(mir::TypeKind::Vague(mir::VagueType::Unknown))
} else if let Some(v) = v.first() {
Some(v.return_type.clone())
} else {
None
}
}
}
pub fn get_var(&self, name: &String) -> Option<&InferredType> {
self.variables.get(name).map(|v| &v.inferred)
}
pub fn get_return_type(&self, name: &String) -> Option<&mir::TypeKind> {
self.functions.get(name).map(|v| &v.return_type)
})
}
}
@ -200,53 +138,18 @@ impl Default for VirtualScope {
}
}
#[derive(Debug)]
pub struct State {
errors: Vec<IntoMIRError>,
fatal: bool,
}
impl State {
fn note<T: std::fmt::Debug>(
&mut self,
value: Result<T, IntoMIRError>,
) -> Result<T, IntoMIRError> {
dbg!(&value);
if let Err(e) = &value {
self.errors.push(e.clone());
}
value
}
fn err<T>(&mut self, error: IntoMIRError) -> Result<T, IntoMIRError> {
self.errors.push(error.clone());
Err(error)
}
}
impl Default for State {
fn default() -> Self {
Self {
errors: Default::default(),
fatal: false,
}
}
}
impl ast::Module {
pub fn process(&self) -> mir::Module {
let mut state = State::default();
let mut scope = VirtualScope::default();
for stmt in &self.top_level_statements {
match stmt {
FunctionDefinition(ast::FunctionDefinition(signature, _, range)) => {
state.note(scope.set_fun(VirtualFunctionSignature {
FunctionDefinition(ast::FunctionDefinition(signature, _, _)) => {
scope.set_fun(VirtualFunctionSignature {
name: signature.name.clone(),
return_type: signature.return_type.into(),
parameter_types: signature.args.iter().map(|p| p.1.into()).collect(),
metadata: (*range).into(),
}));
});
}
_ => {}
}
@ -265,34 +168,30 @@ impl ast::Module {
}
FunctionDefinition(ast::FunctionDefinition(signature, block, range)) => {
for (name, ptype) in &signature.args {
state.note(scope.set_var(VirtualVariable {
scope.set_var(VirtualVariable {
name: name.clone(),
inferred: InferredType::Static((*ptype).into(), *range),
meta: ptype.1.into(),
}));
inferred: InferredType::Static((*ptype).into()),
});
}
dbg!(&signature);
if let Some(mir_block) = block.process(&mut state, &mut scope) {
let def = mir::FunctionDefinition {
name: signature.name.clone(),
parameters: signature
.args
.iter()
.cloned()
.map(|p| (p.0, p.1.into()))
.collect(),
kind: mir::FunctionDefinitionKind::Local(mir_block, (*range).into()),
};
functions.push(def);
}
let def = mir::FunctionDefinition {
name: signature.name.clone(),
parameters: signature
.args
.iter()
.cloned()
.map(|p| (p.0, p.1.into()))
.collect(),
kind: mir::FunctionDefinitionKind::Local(
block.into_mir(&mut scope),
(*range).into(),
),
};
functions.push(def);
}
}
}
dbg!(&state);
// TODO do something with state here
mir::Module {
@ -304,79 +203,57 @@ impl ast::Module {
}
impl ast::Block {
pub fn process(&self, state: &mut State, scope: &mut VirtualScope) -> Option<mir::Block> {
pub fn into_mir(&self, scope: &mut VirtualScope) -> mir::Block {
let mut mir_statements = Vec::new();
for statement in &self.0 {
let (kind, range): (Option<mir::StmtKind>, TokenRange) = match statement {
let (kind, range) = match statement {
ast::BlockLevelStatement::Let(s_let) => {
let res = s_let.1.infer_return_type().collapse(state, scope);
let collapsed = state.note(res);
let inferred = match &collapsed {
Ok(t) => InferredType::Static(*t, s_let.2),
Err(e) => InferredType::DownstreamError(e.clone(), s_let.2),
};
state
.note(scope.set_var(VirtualVariable {
name: s_let.0.clone(),
inferred,
meta: s_let.2.into(),
}))
.ok();
let t = s_let.1.infer_return_type().collapse(scope);
let inferred = InferredType::Static(t.clone());
scope.set_var(VirtualVariable {
name: s_let.0.clone(),
inferred,
});
(
collapsed.ok().and_then(|t| {
s_let.1.process(state, scope).map(|e| {
mir::StmtKind::Let(
mir::VariableReference(t, s_let.0.clone(), s_let.2.into()),
e,
)
})
}),
mir::StmtKind::Let(
mir::VariableReference(t, s_let.0.clone(), s_let.2.into()),
s_let.1.process(scope),
),
s_let.2,
)
}
ast::BlockLevelStatement::Import(_) => todo!(),
ast::BlockLevelStatement::Expression(e) => (
e.process(state, scope).map(|e| StmtKind::Expression(e)),
e.1,
),
ast::BlockLevelStatement::Return(_, e) => (
e.process(state, scope).map(|e| StmtKind::Expression(e)),
e.1,
),
ast::BlockLevelStatement::Expression(e) => {
(StmtKind::Expression(e.process(scope)), e.1)
}
ast::BlockLevelStatement::Return(_, e) => {
(StmtKind::Expression(e.process(scope)), e.1)
}
};
if let Some(kind) = kind {
mir_statements.push(mir::Statement(kind, range.into()));
} else {
state.fatal = true;
}
mir_statements.push(mir::Statement(kind, range.into()));
}
let return_expression = if let Some(r) = &self.1 {
if let Some(expr) = r.1.process(state, scope) {
Some((r.0.into(), Box::new(expr)))
} else {
state.fatal = true;
None?
}
Some((r.0.into(), Box::new(r.1.process(scope))))
} else {
None
};
Some(mir::Block {
mir::Block {
statements: mir_statements,
return_expression,
meta: self.2.into(),
})
}
}
fn infer_return_type(&self) -> InferredType {
self.1
.as_ref()
.map(|(_, expr)| expr.infer_return_type())
.unwrap_or(InferredType::Void(self.2))
.unwrap_or(InferredType::Void)
}
}
@ -390,102 +267,59 @@ impl From<ast::ReturnType> for mir::ReturnKind {
}
impl ast::Expression {
fn process(&self, state: &mut State, scope: &mut VirtualScope) -> Option<mir::Expression> {
fn process(&self, scope: &mut VirtualScope) -> mir::Expression {
let kind = match &self.0 {
ast::ExpressionKind::VariableName(name) => {
let ty = scope.get_var(name);
if let Some(ty) = ty {
let res = ty.collapse(state, scope);
state
.note(res)
.map(|result| {
mir::ExprKind::Variable(VariableReference(
result,
name.clone(),
self.1.into(),
))
})
.ok()
ast::ExpressionKind::VariableName(name) => mir::ExprKind::Variable(VariableReference(
if let Some(ty) = scope.get_var(name) {
ty.collapse(scope)
} else {
state
.err(IntoMIRError::VariableNotDefined(
name.clone(),
self.1.into(),
))
.ok()
}
}
ast::ExpressionKind::Literal(literal) => Some(mir::ExprKind::Literal(literal.mir())),
ast::ExpressionKind::Binop(binary_operator, lhs, rhs) => {
let mir_lhs = lhs.process(state, scope);
let mir_rhs = rhs.process(state, scope);
Some(mir::ExprKind::BinOp(
binary_operator.mir(),
Box::new(mir_lhs?),
Box::new(mir_rhs?),
))
}
mir::TypeKind::Vague(mir::VagueType::Unknown)
},
name.clone(),
self.1.into(),
)),
ast::ExpressionKind::Literal(literal) => mir::ExprKind::Literal(literal.mir()),
ast::ExpressionKind::Binop(binary_operator, lhs, rhs) => mir::ExprKind::BinOp(
binary_operator.mir(),
Box::new(lhs.process(scope)),
Box::new(rhs.process(scope)),
),
ast::ExpressionKind::FunctionCall(fn_call_expr) => {
if let Some(fn_type) = scope.get_return_type(&fn_call_expr.0).cloned() {
let parameters = all_ok(
fn_call_expr
.1
.iter()
.map(|e| {
e.process(state, scope)
.ok_or(IntoMIRError::DownstreamError(self.1.into()))
})
.collect(),
);
if let Some(parameters) = parameters {
Some(mir::ExprKind::FunctionCall(mir::FunctionCall {
name: fn_call_expr.0.clone(),
return_type: fn_type,
parameters,
}))
mir::ExprKind::FunctionCall(mir::FunctionCall {
name: fn_call_expr.0.clone(),
return_type: if let Some(r_type) = scope.get_return_type(&fn_call_expr.0) {
r_type
} else {
None
}
} else {
state
.err(IntoMIRError::FunctionNotDefined(
fn_call_expr.0.clone(),
self.1,
))
.ok()
}
}
ast::ExpressionKind::BlockExpr(block) => {
block.process(state, scope).map(|b| mir::ExprKind::Block(b))
mir::TypeKind::Vague(mir::VagueType::Unknown)
},
parameters: fn_call_expr.1.iter().map(|e| e.process(scope)).collect(),
})
}
ast::ExpressionKind::BlockExpr(block) => mir::ExprKind::Block(block.into_mir(scope)),
ast::ExpressionKind::IfExpr(if_expression) => {
let cond = if_expression.0.process(state, scope);
let then_block = if_expression.1.process(state, scope);
let cond = if_expression.0.process(scope);
let then_block = if_expression.1.into_mir(scope);
let else_block = if let Some(el) = &if_expression.2 {
Some(el.process(state, scope)?)
Some(el.into_mir(scope))
} else {
None
};
Some(mir::ExprKind::If(mir::IfExpression(
Box::new(cond?),
then_block?,
else_block,
)))
mir::ExprKind::If(mir::IfExpression(Box::new(cond), then_block, else_block))
}
};
kind.map(|k| mir::Expression(k, self.1.into()))
mir::Expression(kind, self.1.into())
}
fn infer_return_type(&self) -> InferredType {
use ast::ExpressionKind::*;
match &self.0 {
VariableName(name) => InferredType::FromVariable(name.clone(), self.1),
Literal(lit) => InferredType::Static(lit.mir().as_type(), self.1),
VariableName(name) => InferredType::FromVariable(name.clone()),
Literal(lit) => InferredType::Static(lit.mir().as_type()),
Binop(_, lhs, rhs) => {
InferredType::OneOf(vec![lhs.infer_return_type(), rhs.infer_return_type()])
}
FunctionCall(fncall) => InferredType::FunctionReturn(fncall.0.clone(), self.1),
FunctionCall(fncall) => InferredType::FunctionReturn(fncall.0.clone()),
BlockExpr(block) => block.infer_return_type(),
IfExpr(exp) => {
let mut types = vec![exp.1.infer_return_type()];

View File

@ -1,35 +1,35 @@
use std::{collections::HashMap, mem, ops::Deref};
use crate::mir::{self, types::ReturnType, TypeKind, VariableReference};
use reid_lib::{
types::{BasicType, BasicValue, IntegerValue, TypeEnum, Value},
BasicBlock, Context, Function, IntPredicate, Module,
builder::{FunctionValue, InstructionValue},
Block, ConstValue, Context, Function, InstructionKind, IntPredicate, Module, TerminatorKind,
Type,
};
use crate::mir::{self, types::ReturnType, TypeKind, VariableReference};
pub struct ModuleCodegen<'ctx> {
context: &'ctx Context,
pub context: &'ctx Context,
pub module: Module<'ctx>,
}
impl mir::Module {
pub fn codegen<'ctx>(&self, context: &'ctx Context) -> ModuleCodegen<'ctx> {
let module = context.module(&self.name);
let mut module = context.module(&self.name);
let mut functions = HashMap::new();
for function in &self.functions {
let ret_type = function.return_type().unwrap().get_type(&context);
let fn_type = ret_type.function_type(
function
.parameters
.iter()
.map(|(_, p)| p.get_type(&context))
.collect(),
);
let ret_type = function.return_type().unwrap().get_type();
let param_types: Vec<Type> = function
.parameters
.iter()
.map(|(_, p)| p.get_type())
.collect();
let func = match &function.kind {
mir::FunctionDefinitionKind::Local(_, _) => {
module.add_function(fn_type, &function.name)
module.function(&function.name, ret_type, param_types)
}
mir::FunctionDefinitionKind::Extern(_) => todo!(),
};
@ -38,12 +38,13 @@ impl mir::Module {
for mir_function in &self.functions {
let function = functions.get(&mir_function.name).unwrap();
let mut entry = function.block("entry");
let mut stack_values = HashMap::new();
for (i, (p_name, p_type)) in mir_function.parameters.iter().enumerate() {
stack_values.insert(
p_name.clone(),
function.get_param(i, p_type.get_type(&context)).unwrap(),
entry.build(InstructionKind::Param(i)).unwrap(),
);
}
@ -51,14 +52,14 @@ impl mir::Module {
context,
module: &module,
function,
block: function.block("entry"),
functions: functions.clone(),
block: entry,
functions: &functions,
stack_values,
};
match &mir_function.kind {
mir::FunctionDefinitionKind::Local(block, _) => {
if let Some(ret) = block.codegen(&mut scope) {
scope.block.ret(&ret).unwrap();
scope.block.terminate(TerminatorKind::Ret(ret)).unwrap();
}
}
mir::FunctionDefinitionKind::Extern(_) => {}
@ -69,30 +70,30 @@ impl mir::Module {
}
}
pub struct Scope<'ctx> {
pub struct Scope<'ctx, 'a> {
context: &'ctx Context,
module: &'ctx Module<'ctx>,
function: &'ctx Function<'ctx>,
block: BasicBlock<'ctx>,
functions: HashMap<String, Function<'ctx>>,
stack_values: HashMap<String, Value<'ctx>>,
block: Block<'ctx>,
functions: &'a HashMap<String, Function<'ctx>>,
stack_values: HashMap<String, InstructionValue>,
}
impl<'ctx> Scope<'ctx> {
pub fn with_block(&self, block: BasicBlock<'ctx>) -> Scope<'ctx> {
impl<'ctx, 'a> Scope<'ctx, 'a> {
pub fn with_block(&self, block: Block<'ctx>) -> Scope<'ctx, 'a> {
Scope {
block,
context: self.context,
function: self.function,
context: self.context,
module: self.module,
functions: self.functions.clone(),
functions: self.functions,
stack_values: self.stack_values.clone(),
}
}
/// Takes the block out from this scope, swaps the given block in it's place
/// and returns the old block.
pub fn swap_block(&mut self, block: BasicBlock<'ctx>) -> BasicBlock<'ctx> {
pub fn swap_block(&mut self, block: Block<'ctx>) -> Block<'ctx> {
let mut old_block = block;
mem::swap(&mut self.block, &mut old_block);
old_block
@ -100,7 +101,7 @@ impl<'ctx> Scope<'ctx> {
}
impl mir::Statement {
pub fn codegen<'ctx>(&self, scope: &mut Scope<'ctx>) -> Option<Value<'ctx>> {
pub fn codegen<'ctx, 'a>(&self, scope: &mut Scope<'ctx, 'a>) -> Option<InstructionValue> {
match &self.0 {
mir::StmtKind::Let(VariableReference(_, name, _), expression) => {
let value = expression.codegen(scope).unwrap();
@ -115,7 +116,7 @@ impl mir::Statement {
}
impl mir::IfExpression {
pub fn codegen<'ctx>(&self, scope: &mut Scope<'ctx>) -> Option<Value<'ctx>> {
pub fn codegen<'ctx, 'a>(&self, scope: &mut Scope<'ctx, 'a>) -> Option<InstructionValue> {
let condition = self.0.codegen(scope).unwrap();
// Create blocks
@ -125,55 +126,62 @@ impl mir::IfExpression {
let mut then_scope = scope.with_block(then_bb);
let then_res = self.1.codegen(&mut then_scope);
then_scope.block.br(&scope.block).ok();
then_scope
.block
.terminate(TerminatorKind::Branch(scope.block.value()))
.ok();
let else_bb = scope.function.block("else");
let mut else_scope = scope.with_block(else_bb);
let else_opt = if let Some(else_block) = &self.2 {
let else_res = if let Some(else_block) = &self.2 {
before_bb
.conditional_br(&condition, &then_scope.block, &else_scope.block)
.terminate(TerminatorKind::CondBr(
condition,
then_scope.block.value(),
else_scope.block.value(),
))
.unwrap();
let opt = else_block.codegen(&mut else_scope);
if let Some(ret) = opt {
else_scope.block.br(&scope.block).ok();
Some((else_scope.block, ret))
else_scope
.block
.terminate(TerminatorKind::Branch(scope.block.value()))
.ok();
Some(ret)
} else {
None
}
} else {
else_scope.block.br(&scope.block).unwrap();
else_scope
.block
.terminate(TerminatorKind::Branch(scope.block.value()))
.unwrap();
before_bb
.conditional_br(&condition, &then_scope.block, &scope.block)
.terminate(TerminatorKind::CondBr(
condition,
then_scope.block.value(),
scope.block.value(),
))
.unwrap();
None
};
if then_res.is_none() && else_opt.is_none() {
if then_res.is_none() && else_res.is_none() {
None
} else if let Ok(ret_type) = self.1.return_type() {
let phi = scope
.block
.phi(&ret_type.get_type(scope.context), "phi")
.unwrap();
if let Some(then_ret) = then_res {
phi.add_incoming(&then_ret, &then_scope.block);
}
if let Some((else_bb, else_ret)) = else_opt {
phi.add_incoming(&else_ret, &else_bb);
}
Some(phi.build())
} else {
None
let mut inc = Vec::from(then_res.as_slice());
inc.extend(else_res);
Some(scope.block.build(InstructionKind::Phi(vec![])).unwrap())
}
}
}
impl mir::Expression {
pub fn codegen<'ctx>(&self, scope: &mut Scope<'ctx>) -> Option<Value<'ctx>> {
pub fn codegen<'ctx, 'a>(&self, scope: &mut Scope<'ctx, 'a>) -> Option<InstructionValue> {
match &self.0 {
mir::ExprKind::Variable(varref) => {
let v = scope
@ -182,20 +190,24 @@ impl mir::Expression {
.expect("Variable reference not found?!");
Some(v.clone())
}
mir::ExprKind::Literal(lit) => Some(lit.codegen(scope.context)),
mir::ExprKind::Literal(lit) => Some(lit.as_const(&mut scope.block)),
mir::ExprKind::BinOp(binop, lhs_exp, rhs_exp) => {
let lhs = lhs_exp.codegen(scope).expect("lhs has no return value");
let rhs = rhs_exp.codegen(scope).expect("rhs has no return value");
Some(match binop {
mir::BinaryOperator::Add => scope.block.add(&lhs, &rhs, "add").unwrap(),
mir::BinaryOperator::Minus => scope.block.sub(&lhs, &rhs, "sub").unwrap(),
mir::BinaryOperator::Add => {
scope.block.build(InstructionKind::Add(lhs, rhs)).unwrap()
}
mir::BinaryOperator::Minus => {
scope.block.build(InstructionKind::Sub(lhs, rhs)).unwrap()
}
mir::BinaryOperator::Mult => todo!(),
mir::BinaryOperator::And => todo!(),
mir::BinaryOperator::Logic(l) => {
let ret_type = lhs_exp.return_type().expect("No ret type in lhs?");
scope
.block
.integer_compare(&lhs, &rhs, &l.int_predicate(ret_type.signed()), "cmp")
.build(InstructionKind::ICmp(l.int_predicate(), lhs, rhs))
.unwrap()
}
})
@ -210,13 +222,21 @@ impl mir::Expression {
.functions
.get(&call.name)
.expect("function not found!");
Some(scope.block.call(callee, params, "call").unwrap())
Some(
scope
.block
.build(InstructionKind::FunctionCall(callee.value(), params))
.unwrap(),
)
}
mir::ExprKind::If(if_expression) => if_expression.codegen(scope),
mir::ExprKind::Block(block) => {
let mut inner_scope = scope.with_block(scope.function.block("inner"));
if let Some(ret) = block.codegen(&mut inner_scope) {
inner_scope.block.br(&scope.block);
inner_scope
.block
.terminate(TerminatorKind::Branch(scope.block.value()))
.unwrap();
Some(ret)
} else {
None
@ -227,18 +247,16 @@ impl mir::Expression {
}
impl mir::LogicOperator {
fn int_predicate(&self, signed: bool) -> IntPredicate {
match (self, signed) {
(mir::LogicOperator::LessThan, true) => IntPredicate::SLT,
(mir::LogicOperator::GreaterThan, true) => IntPredicate::SGT,
(mir::LogicOperator::LessThan, false) => IntPredicate::ULT,
(mir::LogicOperator::GreaterThan, false) => IntPredicate::UGT,
fn int_predicate(&self) -> IntPredicate {
match self {
mir::LogicOperator::LessThan => IntPredicate::LessThan,
mir::LogicOperator::GreaterThan => IntPredicate::GreaterThan,
}
}
}
impl mir::Block {
pub fn codegen<'ctx>(&self, mut scope: &mut Scope<'ctx>) -> Option<Value<'ctx>> {
pub fn codegen<'ctx, 'a>(&self, mut scope: &mut Scope<'ctx, 'a>) -> Option<InstructionValue> {
for stmt in &self.statements {
stmt.codegen(&mut scope);
}
@ -247,7 +265,7 @@ impl mir::Block {
let ret = expr.codegen(&mut scope).unwrap();
match kind {
mir::ReturnKind::Hard => {
scope.block.ret(&ret).unwrap();
scope.block.terminate(TerminatorKind::Ret(ret)).unwrap();
None
}
mir::ReturnKind::Soft => Some(ret),
@ -259,21 +277,25 @@ impl mir::Block {
}
impl mir::Literal {
pub fn codegen<'ctx>(&self, context: &'ctx Context) -> Value<'ctx> {
let val: IntegerValue<'ctx> = match *self {
mir::Literal::I32(val) => context.type_i32().from_signed(val as i64),
mir::Literal::I16(val) => context.type_i16().from_signed(val as i64),
};
Value::Integer(val)
pub fn as_const(&self, block: &mut Block) -> InstructionValue {
block.build(self.as_const_kind()).unwrap()
}
pub fn as_const_kind(&self) -> InstructionKind {
InstructionKind::Constant(match *self {
mir::Literal::I32(val) => ConstValue::I32(val),
mir::Literal::I16(val) => ConstValue::I16(val),
})
}
}
impl TypeKind {
fn get_type<'ctx>(&self, context: &'ctx Context) -> TypeEnum<'ctx> {
fn get_type(&self) -> Type {
match &self {
TypeKind::I32 => TypeEnum::Integer(context.type_i32()),
TypeKind::I16 => TypeEnum::Integer(context.type_i16()),
TypeKind::I32 => Type::I32,
TypeKind::I16 => Type::I16,
TypeKind::Void => panic!("Void not a supported type"),
TypeKind::Vague(_) => panic!("Tried to compile a vague type!"),
}
}
}

View File

@ -50,10 +50,15 @@ pub fn compile(source: &str) -> Result<String, ReidError> {
dbg!(&mir_module);
let mut context = Context::new();
let cogegen_module = mir_module.codegen(&mut context);
let codegen_module = mir_module.codegen(&mut context);
Ok(match cogegen_module.module.print_to_string() {
Ok(v) => v,
Err(e) => panic!("Err: {:?}", e),
})
dbg!(&codegen_module.context);
codegen_module.context.compile();
Ok(String::new())
// Ok(match cogegen_module.module.print_to_string() {
// Ok(v) => v,
// Err(e) => panic!("Err: {:?}", e),
// })
}

View File

@ -29,6 +29,12 @@ pub enum TypeKind {
I32,
I16,
Void,
Vague(VagueType),
}
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
pub enum VagueType {
Unknown,
}
impl TypeKind {

View File

@ -54,13 +54,13 @@ impl ReturnType for IfExpression {
impl ReturnType for VariableReference {
fn return_type(&self) -> Result<TypeKind, ReturnTypeOther> {
Ok(self.0)
Ok(self.0.clone())
}
}
impl ReturnType for FunctionCall {
fn return_type(&self) -> Result<TypeKind, ReturnTypeOther> {
Ok(self.return_type)
Ok(self.return_type.clone())
}
}
@ -68,7 +68,7 @@ impl ReturnType for FunctionDefinition {
fn return_type(&self) -> Result<TypeKind, ReturnTypeOther> {
match &self.kind {
FunctionDefinitionKind::Local(block, _) => block.return_type(),
FunctionDefinitionKind::Extern(type_kind) => Ok(*type_kind),
FunctionDefinitionKind::Extern(type_kind) => Ok(type_kind.clone()),
}
}
}