reid-llvm/src/ast.rs

337 lines
9.9 KiB
Rust

use crate::{
lexer::Token,
token_stream::{Error, TokenStream},
};
pub trait Parse
where
Self: std::marker::Sized,
{
fn parse(stream: TokenStream) -> Result<Self, Error>;
}
#[derive(Debug, Clone)]
pub enum Type {
I32,
}
impl Parse for Type {
fn parse(mut stream: TokenStream) -> Result<Self, Error> {
if let Some(Token::Identifier(ident)) = stream.next() {
Ok(match &*ident {
"i32" => Type::I32,
_ => panic!("asd"),
})
} else {
Err(stream.expected_err("type identifier")?)
}
}
}
#[derive(Debug, Clone)]
pub enum Literal {
I32(i32),
}
#[derive(Debug, Clone)]
pub enum BinaryOperator {
Add,
Mult,
}
#[derive(Debug, Clone)]
pub enum Expression {
VariableName(String),
Literal(Literal),
Binop(BinaryOperator, Box<Expression>, Box<Expression>),
FunctionCall(Box<FunctionCallExpression>),
BlockExpr(Box<Block>),
}
impl Parse for Expression {
fn parse(mut stream: TokenStream) -> Result<Expression, Error> {
let lhs = parse_primary_expression(&mut stream)?;
parse_binop_rhs(&mut stream, lhs, 0)
}
}
fn parse_primary_expression(stream: &mut TokenStream) -> Result<Expression, Error> {
if let Ok(exp) = stream.parse() {
Ok(Expression::FunctionCall(Box::new(exp)))
} else if let Ok(block) = stream.parse() {
Ok(Expression::BlockExpr(Box::new(block)))
} else if let Some(token) = stream.next() {
Ok(match &token {
Token::Identifier(v) => Expression::VariableName(v.clone()),
Token::DecimalValue(v) => Expression::Literal(Literal::I32(v.parse().unwrap())),
Token::ParenOpen => {
let exp = stream.parse()?;
stream.expect(Token::ParenClose)?;
exp
}
_ => Err(stream.expected_err("identifier, constant or parentheses")?)?,
})
} else {
Err(stream.expected_err("expression")?)?
}
}
/// This algorithm seems somewhat like magic to me. I understand it if I read
/// carefully, but it is difficult to read every single time.
///
/// Reference for how the algorithm is formed:
/// https://llvm.org/docs/tutorial/MyFirstLanguageFrontend/LangImpl02.html#binary-expression-parsing
fn parse_binop_rhs(
stream: &mut TokenStream,
mut lhs: Expression,
expr_prec: i8,
) -> Result<Expression, Error> {
while let Some(token) = stream.peek() {
let curr_token_prec = token.get_token_prec();
if curr_token_prec < expr_prec {
break; // Just return lhs
} else {
// token has to be an operator
stream.next(); // Eat token
let mut rhs = parse_primary_expression(stream)?;
if let Some(next_op) = stream.peek() {
let next_prec = next_op.get_token_prec();
if curr_token_prec < next_prec {
// Operator on the right of rhs has more precedence, turn
// rhs into lhs for new binop
rhs = parse_binop_rhs(stream, rhs, curr_token_prec + 1)?;
}
}
use BinaryOperator::*;
lhs = match &token {
Token::Plus => Expression::Binop(Add, Box::new(lhs), Box::new(rhs)),
Token::Times => Expression::Binop(Mult, Box::new(lhs), Box::new(rhs)),
_ => Err(stream.expected_err("+ or *")?)?,
};
}
}
Ok(lhs)
}
#[derive(Debug, Clone)]
pub struct FunctionCallExpression(pub String, pub Vec<Expression>);
impl Parse for FunctionCallExpression {
fn parse(mut stream: TokenStream) -> Result<Self, Error> {
if let Some(Token::Identifier(name)) = stream.next() {
stream.expect(Token::ParenOpen)?;
let mut args = Vec::new();
if let Ok(exp) = stream.parse() {
args.push(exp);
while stream.expect(Token::Comma).is_ok() {
args.push(stream.parse()?);
}
}
stream.expect(Token::ParenClose)?;
Ok(FunctionCallExpression(name, args))
} else {
Err(stream.expected_err("identifier")?)
}
}
}
#[derive(Debug, Clone)]
pub struct LetStatement(pub String, pub Expression);
impl Parse for LetStatement {
fn parse(mut stream: TokenStream) -> Result<LetStatement, Error> {
stream.expect(Token::LetKeyword)?;
if let Some(Token::Identifier(variable)) = stream.next() {
stream.expect(Token::Equals)?;
let expression = stream.parse()?;
stream.expect(Token::Semi)?;
Ok(LetStatement(variable, expression))
} else {
Err(stream.expected_err("identifier")?)
}
}
}
#[derive(Debug, Clone)]
pub struct ImportStatement(Vec<String>);
impl Parse for ImportStatement {
fn parse(mut stream: TokenStream) -> Result<Self, Error> {
stream.expect(Token::ImportKeyword)?;
let mut import_list = Vec::new();
if let Some(Token::Identifier(name)) = stream.next() {
import_list.push(name);
while stream.expect(Token::Colon).is_ok() && stream.expect(Token::Colon).is_ok() {
if let Some(Token::Identifier(name)) = stream.next() {
import_list.push(name);
} else {
Err(stream.expected_err("identifier")?)?
}
}
} else {
Err(stream.expected_err("identifier")?)?
}
stream.expect(Token::Semi)?;
Ok(ImportStatement(import_list))
}
}
#[derive(Debug)]
pub struct FunctionDefinition(pub FunctionSignature, pub Block);
impl Parse for FunctionDefinition {
fn parse(mut stream: TokenStream) -> Result<Self, Error> {
stream.expect(Token::FnKeyword)?;
Ok(FunctionDefinition(stream.parse()?, stream.parse()?))
}
}
#[derive(Debug, Clone)]
pub struct FunctionSignature {
pub name: String,
pub args: Vec<(String, Type)>,
pub return_type: Option<Type>,
}
impl Parse for FunctionSignature {
fn parse(mut stream: TokenStream) -> Result<Self, Error> {
if let Some(Token::Identifier(name)) = stream.next() {
stream.expect(Token::ParenOpen)?;
let mut args = Vec::new();
while let Some(Token::Identifier(arg_name)) = stream.peek() {
stream.next();
stream.expect(Token::Colon)?;
args.push((arg_name, stream.parse()?));
}
stream.expect(Token::ParenClose)?;
let mut return_type = None;
if stream.expect(Token::Arrow).is_ok() {
return_type = Some(stream.parse()?);
}
Ok(FunctionSignature {
name,
args,
return_type,
})
} else {
Err(stream.expected_err("identifier")?)?
}
}
}
#[derive(Debug, Clone, Copy)]
pub enum ReturnType {
Soft,
Hard,
}
#[derive(Debug, Clone)]
pub struct Block(
pub Vec<BlockLevelStatement>,
pub Option<(ReturnType, Expression)>,
);
impl Parse for Block {
fn parse(mut stream: TokenStream) -> Result<Self, Error> {
let mut statements = Vec::new();
let mut return_stmt = None;
stream.expect(Token::BraceOpen)?;
while !matches!(stream.peek(), Some(Token::BraceClose)) {
if let Some((r_type, e)) = return_stmt.take() {
println!("Oh no, does this statement lack ;");
dbg!(r_type, e);
}
let statement = stream.parse()?;
if let BlockLevelStatement::Return((r_type, e)) = &statement {
match r_type {
ReturnType::Hard => {
return_stmt = Some((*r_type, e.clone()));
break; // Return has to be the last statement
// TODO: Make a mechanism that "can" parse even after this
}
ReturnType::Soft => {
return_stmt = Some((*r_type, e.clone()));
continue; // In theory possible to have lines after a soft return
}
};
}
statements.push(statement);
}
stream.expect(Token::BraceClose)?;
Ok(Block(statements, return_stmt))
}
}
#[derive(Debug, Clone)]
pub enum BlockLevelStatement {
Let(LetStatement),
Import(ImportStatement),
Expression(Expression),
Return((ReturnType, Expression)),
}
impl Parse for BlockLevelStatement {
fn parse(mut stream: TokenStream) -> Result<Self, Error> {
use BlockLevelStatement as Stmt;
Ok(match stream.peek() {
Some(Token::LetKeyword) => Stmt::Let(stream.parse()?),
Some(Token::ImportKeyword) => Stmt::Import(stream.parse()?),
Some(Token::ReturnKeyword) => {
stream.next();
let exp = stream.parse()?;
stream.expect(Token::Semi)?;
Stmt::Return((ReturnType::Hard, exp))
}
_ => {
if let Ok(e) = stream.parse() {
if stream.expect(Token::Semi).is_ok() {
Stmt::Expression(e)
} else {
Stmt::Return((ReturnType::Soft, e))
}
} else {
Err(stream.expected_err("expression")?)?
}
}
})
}
}
#[derive(Debug)]
pub enum TopLevelStatement {
Import(ImportStatement),
FunctionDefinition(FunctionDefinition),
}
impl Parse for TopLevelStatement {
fn parse(mut stream: TokenStream) -> Result<Self, Error> {
use TopLevelStatement as Stmt;
Ok(match stream.peek() {
Some(Token::ImportKeyword) => Stmt::Import(stream.parse()?),
Some(Token::FnKeyword) => Stmt::FunctionDefinition(stream.parse()?),
_ => Err(stream.expected_err("import or fn")?)?,
})
}
}