reid-llvm/reid/src/codegen/mod.rs

1533 lines
63 KiB
Rust

use std::{cell::RefCell, collections::HashMap, rc::Rc};
use allocator::{Allocator, AllocatorScope};
use intrinsics::*;
use reid_lib::{
compile::CompiledModule,
debug_information::{
DebugFileData, DebugLexicalScope, DebugLocalVariable, DebugLocation, DebugMetadata, DebugRecordKind,
DebugSubprogramData, DebugSubprogramOptionals, DebugSubprogramType, DebugTypeData, DwarfFlags,
InstructionDebugRecordData,
},
CmpPredicate, ConstValueKind, Context, CustomTypeKind, Function, FunctionFlags, Instr, Module, NamedStruct,
TerminatorKind as Term, Type,
};
use scope::*;
use crate::{
mir::{
self,
implement::TypeCategory,
pass::{AssociatedFunctionKey, BinopKey},
CustomTypeKey, FunctionCall, FunctionDefinitionKind, FunctionParam, NamedVariableRef, SourceModuleId,
StructField, StructType, TypeDefinition, TypeDefinitionKind, TypeKind, WhileStatement,
},
util::try_all,
};
mod allocator;
pub mod intrinsics;
pub(super) mod scope;
pub(super) mod util;
#[derive(thiserror::Error, Debug, Clone, PartialEq, PartialOrd)]
pub enum ErrorKind {
#[error("NULL error, should never occur!")]
Null,
}
/// Context that contains all of the given modules as complete codegenerated
/// LLIR that can then be finally compiled into LLVM IR.
#[derive(Debug)]
pub struct CodegenContext<'ctx> {
pub(crate) context: &'ctx Context,
}
impl<'ctx> CodegenContext<'ctx> {
/// Compile contained LLIR into LLVM IR and produce `hello.o` and
/// `hello.asm`
pub fn compile(&self, cpu: Option<String>, features: Vec<String>) -> CompiledModule {
self.context.compile(cpu, features)
}
}
impl mir::Context {
/// Compile MIR [`Context`] into [`CodegenContext`] containing LLIR.
pub fn codegen<'ctx>(&self, context: &'ctx Context) -> Result<CodegenContext<'ctx>, ErrorKind> {
let mut modules = HashMap::new();
let mut modules_sorted = self.modules.iter().map(|(_, m)| m).collect::<Vec<_>>();
modules_sorted.sort_by(|m1, m2| m2.module_id.cmp(&m1.module_id));
for module in &modules_sorted {
let codegen = module.codegen(context, modules.clone())?;
modules.insert(module.module_id, codegen);
}
Ok(CodegenContext { context })
}
}
#[derive(Clone)]
struct ModuleCodegen<'ctx> {
name: String,
module: Module<'ctx>,
}
impl<'ctx> std::fmt::Debug for ModuleCodegen<'ctx> {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
std::fmt::Debug::fmt(&self.module.as_printable(), f)
}
}
#[derive(Debug, PartialEq, Eq, PartialOrd, Ord, Clone, Copy)]
struct State {
should_load: bool,
}
impl State {
/// Sets should load, returning a new state
fn load(self, should: bool) -> State {
State { should_load: should }
}
}
impl Default for State {
fn default() -> Self {
Self { should_load: true }
}
}
impl mir::Module {
fn codegen<'ctx>(
&'ctx self,
context: &'ctx Context,
modules: HashMap<SourceModuleId, ModuleCodegen<'ctx>>,
) -> Result<ModuleCodegen<'ctx>, ErrorKind> {
let mut module = context.module(&self.name, self.is_main);
let tokens = &self.tokens;
let const_value = module.add_constant(ConstValueKind::I128(132));
module.add_global("some_global", const_value);
let (debug, compile_unit) = if let Some(path) = &self.path {
module.create_debug_info(DebugFileData {
name: path.file_name().unwrap().to_str().unwrap().to_owned(),
directory: path.parent().unwrap().to_str().unwrap().to_owned(),
})
} else {
module.create_debug_info(DebugFileData {
name: self.name.clone(),
directory: String::new(),
})
};
let mut types = HashMap::new();
let mut type_values = HashMap::new();
let mut debug_types = HashMap::new();
macro_rules! insert_debug {
($kind:expr) => {
debug_types.insert(
$kind.clone(),
$kind.get_debug_type_hard(
&compile_unit,
&debug,
&debug_types,
&type_values,
&types,
self.module_id,
&self.tokens,
&modules,
),
)
};
}
insert_debug!(&TypeKind::Bool);
insert_debug!(&TypeKind::U8);
insert_debug!(&TypeKind::U16);
insert_debug!(&TypeKind::U32);
insert_debug!(&TypeKind::U64);
insert_debug!(&TypeKind::U128);
insert_debug!(&TypeKind::I8);
insert_debug!(&TypeKind::I16);
insert_debug!(&TypeKind::I32);
insert_debug!(&TypeKind::I64);
insert_debug!(&TypeKind::I128);
insert_debug!(&TypeKind::Void);
insert_debug!(&TypeKind::Char);
let mut typedefs = self.typedefs.clone();
typedefs.sort_by(|a, b| b.source_module.cmp(&a.source_module));
for typedef in typedefs {
let type_key = CustomTypeKey(typedef.name.clone(), typedef.source_module);
let type_value = match &typedef.kind {
TypeDefinitionKind::Struct(StructType(fields)) => {
module.custom_type(CustomTypeKind::NamedStruct(NamedStruct(
typedef.name.clone(),
fields
.iter()
// TODO: Reorder custom-type definitions such that
// inner types get evaluated first. Otherwise this
// will cause a panic!
.map(|StructField(_, t, _)| t.get_type(&type_values))
.collect(),
)))
}
};
types.insert(type_value, typedef.clone());
type_values.insert(type_key.clone(), type_value);
insert_debug!(&TypeKind::CustomType(type_key.clone()));
}
let mut functions = HashMap::new();
for function in &self.functions {
let param_types: Vec<Type> = function
.parameters
.iter()
.map(|FunctionParam { ty, .. }| ty.get_type(&type_values))
.collect();
let is_main = self.is_main && function.name == "main";
let module_prefix = if let Some(module) = function.source {
if module == self.module_id {
format!("reid.{}.", self.name)
} else {
format!("reid.{}.", modules.get(&module).unwrap().name)
}
} else {
format!("reid.intrinsic.")
};
let linkage_name = function.linkage_name.clone().unwrap_or(function.name.clone());
let full_name = format!(
"{}{}",
module_prefix,
function.linkage_name.clone().unwrap_or(function.name.clone())
);
let func = match &function.kind {
mir::FunctionDefinitionKind::Local(_, _) => Some(module.function(
&full_name,
None,
function.return_type.get_type(&type_values),
param_types,
FunctionFlags {
is_pub: function.is_pub || is_main,
is_main,
is_imported: function.is_imported,
..FunctionFlags::default()
},
)),
mir::FunctionDefinitionKind::Extern(imported) => Some(module.function(
&full_name,
if function.source == None {
Some(function.linkage_name.clone().unwrap())
} else {
if !*imported {
Some(linkage_name.clone())
} else {
None
}
},
function.return_type.get_type(&type_values),
param_types,
FunctionFlags {
is_extern: true,
is_imported: *imported,
..FunctionFlags::default()
},
)),
mir::FunctionDefinitionKind::Intrinsic(_) => None,
};
if let Some(func) = func {
functions.insert(function.name.clone(), ScopeFunctionKind::UserGenerated(func));
}
}
let mut associated_functions = HashMap::new();
for (ty, function) in &self.associated_functions {
let param_types: Vec<Type> = function
.parameters
.iter()
.map(|FunctionParam { ty, .. }| ty.get_type(&type_values))
.collect();
let is_main = self.is_main && function.name == "main";
let module_prefix = if let Some(module) = function.source {
if module == self.module_id {
format!("reid.{}.", self.name)
} else {
format!("reid.{}.", modules.get(&module).unwrap().name)
}
} else {
format!("reid.intrinsic.")
};
let full_name = format!("{}{}::{}", module_prefix, ty, function.name);
let func = match &function.kind {
mir::FunctionDefinitionKind::Local(_, _) => Some(module.function(
&full_name,
None,
function.return_type.get_type(&type_values),
param_types,
FunctionFlags {
is_pub: function.is_pub || is_main,
is_main,
is_imported: function.is_imported,
..FunctionFlags::default()
},
)),
mir::FunctionDefinitionKind::Extern(imported) => Some(module.function(
&full_name,
None,
function.return_type.get_type(&type_values),
param_types,
FunctionFlags {
is_extern: true,
is_imported: *imported,
..FunctionFlags::default()
},
)),
mir::FunctionDefinitionKind::Intrinsic(_) => None,
};
if let Some(func) = func {
associated_functions.insert(
AssociatedFunctionKey(ty.clone(), function.name.clone()),
ScopeFunctionKind::UserGenerated(func),
);
}
}
let mut binops = HashMap::new();
for binop in &self.binop_defs {
let binop_fn_name = format!(
"binop.{}.{:?}.{}.{}",
binop.lhs.ty, binop.op, binop.rhs.ty, binop.return_type
);
binops.insert(
BinopKey {
params: (binop.lhs.ty.clone(), binop.rhs.ty.clone()),
operator: binop.op,
},
StackBinopDefinition {
parameters: (binop.lhs.clone(), binop.rhs.clone()),
return_ty: binop.return_type.clone(),
kind: match &binop.fn_kind {
FunctionDefinitionKind::Local(..) => {
let ir_function = module.function(
&binop_fn_name,
None,
binop.return_type.get_type(&type_values),
vec![binop.lhs.ty.get_type(&type_values), binop.rhs.ty.get_type(&type_values)],
FunctionFlags {
is_pub: binop.exported,
is_imported: binop.exported,
..Default::default()
},
);
let mut entry = ir_function.block("entry");
let allocator = Allocator::from(
&binop.fn_kind,
&vec![binop.lhs.clone(), binop.rhs.clone()],
&mut AllocatorScope {
block: &mut entry,
type_values: &type_values,
mod_id: self.module_id,
},
);
let mut scope = Scope {
context,
modules: &modules,
tokens,
module: &module,
module_id: self.module_id,
function: &ir_function,
block: entry,
assoc_functions: &associated_functions,
functions: &functions,
types: &types,
type_values: &type_values,
stack_values: HashMap::new(),
debug: Some(Debug {
info: &debug,
scope: compile_unit.clone(),
types: &debug_types,
}),
binops: &binops,
allocator: Rc::new(RefCell::new(allocator)),
};
binop
.fn_kind
.codegen(
binop_fn_name.clone(),
false,
&mut scope,
&vec![binop.lhs.clone(), binop.rhs.clone()],
&binop.return_type,
&ir_function,
match &binop.fn_kind {
FunctionDefinitionKind::Local(_, meta) => {
meta.into_debug(tokens, &compile_unit)
}
FunctionDefinitionKind::Extern(_) => None,
FunctionDefinitionKind::Intrinsic(_) => None,
},
)
.unwrap();
ScopeFunctionKind::UserGenerated(ir_function)
}
FunctionDefinitionKind::Extern(imported) => ScopeFunctionKind::UserGenerated(module.function(
&binop_fn_name,
None,
binop.return_type.get_type(&type_values),
vec![binop.lhs.ty.get_type(&type_values), binop.rhs.ty.get_type(&type_values)],
FunctionFlags {
is_extern: true,
is_imported: *imported,
..FunctionFlags::default()
},
)),
FunctionDefinitionKind::Intrinsic(intrinsic_function) => {
ScopeFunctionKind::Intrinsic(intrinsic_function)
}
},
},
);
}
for mir_function in &self.functions {
if let ScopeFunctionKind::UserGenerated(function) = functions.get(&mir_function.name).unwrap() {
let mut entry = function.block("entry");
let allocator = Allocator::from(
&mir_function.kind,
&mir_function.parameters,
&mut AllocatorScope {
block: &mut entry,
type_values: &type_values,
mod_id: self.module_id,
},
);
let mut scope = Scope {
context,
modules: &modules,
tokens,
module: &module,
module_id: self.module_id,
function,
block: entry,
assoc_functions: &associated_functions,
functions: &functions,
types: &types,
type_values: &type_values,
stack_values: HashMap::new(),
debug: Some(Debug {
info: &debug,
scope: compile_unit.clone(),
types: &debug_types,
}),
binops: &binops,
allocator: Rc::new(RefCell::new(allocator)),
};
mir_function
.kind
.codegen(
mir_function.name.clone(),
mir_function.is_pub,
&mut scope,
&mir_function.parameters,
&mir_function.return_type,
&function,
match &mir_function.kind {
FunctionDefinitionKind::Local(..) => {
mir_function.signature().into_debug(tokens, &compile_unit)
}
FunctionDefinitionKind::Extern(_) => None,
FunctionDefinitionKind::Intrinsic(_) => None,
},
)
.unwrap();
}
}
for (ty, mir_function) in &self.associated_functions {
if let ScopeFunctionKind::UserGenerated(function) = associated_functions
.get(&AssociatedFunctionKey(ty.clone(), mir_function.name.clone()))
.unwrap()
{
let mut entry = function.block("entry");
let allocator = Allocator::from(
&mir_function.kind,
&mir_function.parameters,
&mut AllocatorScope {
block: &mut entry,
type_values: &type_values,
mod_id: self.module_id,
},
);
let mut scope = Scope {
context,
modules: &modules,
tokens,
module: &module,
module_id: self.module_id,
function,
block: entry,
assoc_functions: &associated_functions,
functions: &functions,
types: &types,
type_values: &type_values,
stack_values: HashMap::new(),
debug: Some(Debug {
info: &debug,
scope: compile_unit.clone(),
types: &debug_types,
}),
binops: &binops,
allocator: Rc::new(RefCell::new(allocator)),
};
mir_function
.kind
.codegen(
mir_function.name.clone(),
mir_function.is_pub,
&mut scope,
&mir_function.parameters,
&mir_function.return_type,
&function,
match &mir_function.kind {
FunctionDefinitionKind::Local(..) => {
mir_function.signature().into_debug(tokens, &compile_unit)
}
FunctionDefinitionKind::Extern(_) => None,
FunctionDefinitionKind::Intrinsic(_) => None,
},
)
.unwrap();
}
}
Ok(ModuleCodegen {
name: self.name.clone(),
module,
})
}
}
impl FunctionDefinitionKind {
fn codegen<'ctx, 'scope>(
&self,
name: String,
is_pub: bool,
scope: &mut Scope,
parameters: &Vec<FunctionParam>,
return_type: &TypeKind,
ir_function: &Function,
debug_location: Option<DebugLocation>,
) -> Result<(), ErrorKind> {
match &self {
mir::FunctionDefinitionKind::Local(block, _) => {
// Insert debug information
if let Some(debug) = &scope.debug {
if let Some(location) = debug_location {
// let debug_scope = debug.inner_scope(&outer_scope, location);
let fn_param_ty = &return_type.get_debug_type(&debug, scope);
let debug_ty = debug.info.debug_type(DebugTypeData::Subprogram(DebugSubprogramType {
parameters: vec![*fn_param_ty],
flags: DwarfFlags,
}));
let subprogram = debug.info.subprogram(
debug.scope.clone(),
DebugSubprogramData {
name: name.clone(),
outer_scope: debug.scope.clone(),
location,
ty: debug_ty,
opts: DebugSubprogramOptionals {
is_local: !is_pub,
is_definition: true,
..DebugSubprogramOptionals::default()
},
},
);
ir_function.set_debug(subprogram.clone());
scope.debug = Some(Debug {
info: debug.info,
scope: subprogram.clone(),
types: debug.types,
});
}
}
// Compile actual IR part
for (i, p) in parameters.iter().enumerate() {
// Codegen actual parameters
let arg_name = format!("arg.{}", p.name);
let param = scope
.block
.build_named(format!("{}.get", arg_name), Instr::Param(i))
.unwrap();
let alloca = scope.allocate(&p.meta, &p.ty).unwrap();
scope
.block
.build_named(format!("{}.store", arg_name), Instr::Store(alloca, param))
.unwrap();
scope.stack_values.insert(
p.name.clone(),
StackValue(
StackValueKind::mutable(p.ty.is_mutable(), alloca),
TypeKind::CodegenPtr(Box::new(p.ty.clone())),
),
);
}
let state = State::default();
if let Some(ret) = block.codegen(scope, &state, false)? {
scope.block.terminate(Term::Ret(ret.instr())).unwrap();
} else {
if !scope.block.delete_if_unused().unwrap() {
// Add a void return just in case if the block
// wasn't unused but didn't have a terminator yet
scope.block.terminate(Term::RetVoid).ok();
}
}
if let Some(debug) = &scope.debug {
if let Some(location) = &block.return_meta().into_debug(scope.tokens, &debug.scope) {
let location = debug.info.location(&debug.scope, location.clone());
scope.block.set_terminator_location(location).unwrap();
}
}
}
mir::FunctionDefinitionKind::Extern(_) => {}
mir::FunctionDefinitionKind::Intrinsic(_) => {}
};
Ok(())
}
}
impl mir::Block {
fn codegen<'ctx, 'a>(
&self,
mut scope: &mut Scope<'ctx, 'a>,
state: &State,
create_debug_scope: bool,
) -> Result<Option<StackValue>, ErrorKind> {
let parent_scope = if let Some(debug) = &mut scope.debug {
let parent_scope = debug.scope.clone();
if create_debug_scope {
let location = self.meta.into_debug(scope.tokens, &debug.scope).unwrap();
let scope = debug.info.lexical_scope(&debug.scope, DebugLexicalScope { location });
debug.scope = scope;
}
Some(parent_scope)
} else {
None
};
for stmt in &self.statements {
stmt.codegen(&mut scope, state)?.map(|s| {
if let Some(debug) = &scope.debug {
let location = stmt.1.into_debug(scope.tokens, &debug.scope).unwrap();
let loc_val = debug.info.location(&debug.scope, location);
s.instr().with_location(&mut scope.block, loc_val);
}
});
}
let return_value = if let Some((kind, expr)) = &self.return_expression {
if let Some(expr) = expr {
let ret = expr.codegen(&mut scope, &mut state.load(true))?;
match kind {
mir::ReturnKind::Hard => {
if let Some(ret) = ret {
scope.block.terminate(Term::Ret(ret.instr())).unwrap();
} else {
scope.block.terminate(Term::RetVoid).unwrap();
}
Ok(None)
}
mir::ReturnKind::Soft => Ok(ret),
}
} else {
match kind {
mir::ReturnKind::Hard => scope.block.terminate(Term::RetVoid).unwrap(),
mir::ReturnKind::Soft => {}
}
Ok(None)
}
} else {
Ok(None)
};
if let Some(parent_scope) = parent_scope {
scope.debug.as_mut().unwrap().scope = parent_scope;
}
return_value
}
}
impl mir::Statement {
fn codegen<'ctx, 'a>(&self, scope: &mut Scope<'ctx, 'a>, state: &State) -> Result<Option<StackValue>, ErrorKind> {
let location = scope.debug.clone().map(|d| {
let location = self.1.into_debug(scope.tokens, &d.scope).unwrap();
d.info.location(&d.scope, location)
});
match &self.0 {
mir::StmtKind::Let(NamedVariableRef(ty, name, meta), mutable, expression) => {
let value = expression.codegen(scope, &state)?.unwrap();
let alloca = scope
.allocate(meta, &value.1)
.unwrap()
.maybe_location(&mut scope.block, location.clone());
let store = scope
.block
.build_named(format!("{}.store", name), Instr::Store(alloca, value.instr()))
.unwrap()
.maybe_location(&mut scope.block, location);
let stack_value = match mutable {
true => StackValueKind::Mutable(alloca),
false => StackValueKind::Immutable(alloca),
};
scope.stack_values.insert(
name.clone(),
StackValue(stack_value, TypeKind::CodegenPtr(Box::new(value.clone().1))),
);
if let Some(debug) = &scope.debug {
let location = self.1.into_debug(scope.tokens, &debug.scope).unwrap();
let var = debug.info.metadata(
&location,
DebugMetadata::LocalVar(DebugLocalVariable {
name: name.clone(),
ty: ty.clone().get_debug_type(debug, scope),
always_preserve: true,
flags: DwarfFlags,
}),
);
store.add_record(
&mut scope.block,
InstructionDebugRecordData {
variable: var,
location,
kind: DebugRecordKind::Declare(alloca),
scope: debug.scope.clone(),
},
);
}
Ok(None)
}
mir::StmtKind::Set(lhs, rhs) => {
let lhs_value = lhs
.codegen(scope, &state.load(false))?
.expect("non-returning LHS snuck into codegen!");
let rhs_value = rhs.codegen(scope, state)?;
let Some(rhs_value) = rhs_value else {
return Ok(None);
};
let backing_var = if let Some(var) = lhs.backing_var() {
&format!("store.{}", var.1)
} else {
"store"
};
match lhs_value.0 {
StackValueKind::Immutable(_) => {
panic!("Tried to assign to immutable!")
}
StackValueKind::Mutable(instr) => {
scope
.block
.build_named(backing_var, Instr::Store(instr, rhs_value.instr()))
.unwrap()
.maybe_location(&mut scope.block, location);
}
StackValueKind::Literal(_) => {
panic!("Tried to assign to a literal!")
}
};
Ok(None)
}
mir::StmtKind::Import(_) => todo!(),
mir::StmtKind::Expression(expression) => expression.codegen(scope, state),
mir::StmtKind::While(WhileStatement { condition, block, .. }) => {
let condition_block = scope.function.block("while.cond");
let condition_true_block = scope.function.block("while.body");
let condition_failed_block = scope.function.block("while.end");
scope.block.terminate(Term::Br(condition_block.value())).unwrap();
let mut condition_scope = scope.with_block(condition_block);
let condition_res = condition.codegen(&mut condition_scope, state)?.unwrap();
let true_instr = condition_scope
.block
.build(Instr::Constant(ConstValueKind::Bool(true)))
.unwrap();
let check = condition_scope
.block
.build(Instr::ICmp(CmpPredicate::EQ, condition_res.instr(), true_instr))
.unwrap();
condition_scope
.block
.terminate(Term::CondBr(
check,
condition_true_block.value(),
condition_failed_block.value(),
))
.unwrap();
let mut condition_true_scope = scope.with_block(condition_true_block);
block.codegen(&mut condition_true_scope, state, true)?;
condition_true_scope
.block
.terminate(Term::Br(condition_scope.block.value()))
// Can hard return inside the condition_true_scope
.ok();
scope.swap_block(condition_failed_block);
Ok(None)
}
}
}
}
impl mir::Expression {
fn codegen<'ctx, 'a>(&self, scope: &mut Scope<'ctx, 'a>, state: &State) -> Result<Option<StackValue>, ErrorKind> {
let location = if let Some(debug) = &scope.debug {
Some(
debug
.info
.location(&debug.scope, self.1.into_debug(scope.tokens, &debug.scope).unwrap()),
)
} else {
None
};
let value = match &self.0 {
mir::ExprKind::Variable(varref) => {
varref.0.known().expect("variable type unknown");
let v = scope
.stack_values
.get(&varref.1)
.expect("Variable reference not found?!");
Some({
if state.should_load {
if let TypeKind::CodegenPtr(inner) = &v.1 {
StackValue(
v.0.derive(
scope
.block
.build_named(
format!("{}", varref.1),
Instr::Load(v.0.instr(), inner.get_type(scope.type_values)),
)
.unwrap(),
),
*inner.clone(),
)
} else {
panic!("Variable was not a pointer?!?")
}
} else {
v.clone()
}
})
}
mir::ExprKind::Literal(lit) => Some(StackValue(
StackValueKind::Literal(lit.as_const(&mut scope.block)),
lit.as_type(),
)),
mir::ExprKind::BinOp(binop, lhs_exp, rhs_exp, return_ty) => {
let lhs_val = lhs_exp.codegen(scope, state)?.expect("lhs has no return value");
let rhs_val = rhs_exp.codegen(scope, state)?.expect("rhs has no return value");
let lhs = lhs_val.instr();
let rhs = rhs_val.instr();
let operation = scope.binops.get(&BinopKey {
params: (lhs_val.1.clone(), rhs_val.1.clone()),
operator: *binop,
});
if let Some(operation) = operation {
let a = operation.codegen(lhs_val.clone(), rhs_val.clone(), scope)?;
Some(a)
} else {
let lhs_type = lhs_exp.return_type(&Default::default(), scope.module_id).unwrap().1;
let instr = match (binop, lhs_type.signed(), lhs_type.category() == TypeCategory::Real) {
(mir::BinaryOperator::Add, _, false) => Instr::Add(lhs, rhs),
(mir::BinaryOperator::Add, _, true) => Instr::FAdd(lhs, rhs),
(mir::BinaryOperator::Minus, _, false) => Instr::Sub(lhs, rhs),
(mir::BinaryOperator::Minus, _, true) => Instr::FSub(lhs, rhs),
(mir::BinaryOperator::Mult, _, false) => Instr::Mul(lhs, rhs),
(mir::BinaryOperator::Mult, _, true) => Instr::FMul(lhs, rhs),
(mir::BinaryOperator::And, _, _) => Instr::And(lhs, rhs),
(mir::BinaryOperator::Cmp(i), _, false) => Instr::ICmp(i.predicate(), lhs, rhs),
(mir::BinaryOperator::Cmp(i), _, true) => Instr::FCmp(i.predicate(), lhs, rhs),
(mir::BinaryOperator::Div, false, false) => Instr::UDiv(lhs, rhs),
(mir::BinaryOperator::Div, true, false) => Instr::SDiv(lhs, rhs),
(mir::BinaryOperator::Div, _, true) => Instr::FDiv(lhs, rhs),
(mir::BinaryOperator::Mod, false, false) => {
let div = scope
.block
.build(Instr::UDiv(lhs, rhs))
.unwrap()
.maybe_location(&mut scope.block, location.clone());
let mul = scope
.block
.build(Instr::Mul(rhs, div))
.unwrap()
.maybe_location(&mut scope.block, location.clone());
Instr::Sub(lhs, mul)
}
(mir::BinaryOperator::Mod, true, false) => {
let div = scope
.block
.build(Instr::SDiv(lhs, rhs))
.unwrap()
.maybe_location(&mut scope.block, location.clone());
let mul = scope
.block
.build(Instr::Mul(rhs, div))
.unwrap()
.maybe_location(&mut scope.block, location.clone());
Instr::Sub(lhs, mul)
}
(mir::BinaryOperator::Mod, _, true) => {
let div = scope
.block
.build(Instr::FDiv(lhs, rhs))
.unwrap()
.maybe_location(&mut scope.block, location.clone());
let mul = scope
.block
.build(Instr::Mul(rhs, div))
.unwrap()
.maybe_location(&mut scope.block, location.clone());
Instr::Sub(lhs, mul)
}
(mir::BinaryOperator::Or, true, true) => todo!(),
(mir::BinaryOperator::Or, true, false) => todo!(),
(mir::BinaryOperator::Or, false, true) => todo!(),
(mir::BinaryOperator::Or, false, false) => todo!(),
(mir::BinaryOperator::Xor, true, true) => todo!(),
(mir::BinaryOperator::Xor, true, false) => todo!(),
(mir::BinaryOperator::Xor, false, true) => todo!(),
(mir::BinaryOperator::Xor, false, false) => todo!(),
(mir::BinaryOperator::BitOr, true, true) => todo!(),
(mir::BinaryOperator::BitOr, true, false) => todo!(),
(mir::BinaryOperator::BitOr, false, true) => todo!(),
(mir::BinaryOperator::BitOr, false, false) => todo!(),
(mir::BinaryOperator::BitAnd, true, true) => todo!(),
(mir::BinaryOperator::BitAnd, true, false) => todo!(),
(mir::BinaryOperator::BitAnd, false, true) => todo!(),
(mir::BinaryOperator::BitAnd, false, false) => todo!(),
(mir::BinaryOperator::BitshiftRight, true, true) => todo!(),
(mir::BinaryOperator::BitshiftRight, true, false) => todo!(),
(mir::BinaryOperator::BitshiftRight, false, true) => todo!(),
(mir::BinaryOperator::BitshiftRight, false, false) => todo!(),
(mir::BinaryOperator::BitshiftLeft, true, true) => todo!(),
(mir::BinaryOperator::BitshiftLeft, true, false) => todo!(),
(mir::BinaryOperator::BitshiftLeft, false, true) => todo!(),
(mir::BinaryOperator::BitshiftLeft, false, false) => todo!(),
};
Some(StackValue(
StackValueKind::Immutable(
scope
.block
.build(instr)
.unwrap()
.maybe_location(&mut scope.block, location.clone()),
),
return_ty.clone(),
))
}
}
mir::ExprKind::FunctionCall(call) => codegen_function_call(None, call, scope, state)?,
mir::ExprKind::If(if_expression) => if_expression.codegen(scope, state)?,
mir::ExprKind::Block(block) => {
let inner = scope.function.block("inner");
scope.block.terminate(Term::Br(inner.value())).unwrap();
let mut inner_scope = scope.with_block(inner);
let ret = if let Some(ret) = block.codegen(&mut inner_scope, state, true)? {
Some(ret)
} else {
None
};
let outer = scope.function.block("outer");
inner_scope.block.terminate(Term::Br(outer.value())).ok();
scope.swap_block(outer);
ret
}
mir::ExprKind::Indexed(expression, val_t, idx_expr) => {
let StackValue(kind, ty) = expression
.codegen(scope, &state.load(false))?
.expect("array returned none!");
let idx = idx_expr
.codegen(scope, &state.load(true))?
.expect("index returned none!")
.instr();
let TypeKind::CodegenPtr(inner) = ty else {
panic!();
};
let (ptr, contained_ty) = if let TypeKind::UserPtr(further_inner) = *inner.clone() {
let loaded = scope
.block
.build_named("load", Instr::Load(kind.instr(), inner.get_type(scope.type_values)))
.unwrap();
(
scope
.block
.build_named(format!("gep"), Instr::GetElemPtr(loaded, vec![idx]))
.unwrap()
.maybe_location(&mut scope.block, location.clone()),
*further_inner,
)
} else if let TypeKind::CodegenPtr(further_inner) = *inner.clone() {
let TypeKind::Array(_, _) = *further_inner else {
panic!();
};
(
scope
.block
.build_named(format!("array.gep"), Instr::GetElemPtr(kind.instr(), vec![idx]))
.unwrap()
.maybe_location(&mut scope.block, location.clone()),
val_t.clone(),
)
} else {
let TypeKind::Array(_, _) = *inner else {
panic!();
};
let first = scope
.block
.build_named("array.zero", Instr::Constant(ConstValueKind::U32(0)))
.unwrap();
(
scope
.block
.build_named(format!("array.gep"), Instr::GetElemPtr(kind.instr(), vec![first, idx]))
.unwrap()
.maybe_location(&mut scope.block, location.clone()),
val_t.clone(),
)
};
if state.should_load {
Some(StackValue(
kind.derive(
scope
.block
.build_named("array.load", Instr::Load(ptr, contained_ty.get_type(scope.type_values)))
.unwrap()
.maybe_location(&mut scope.block, location.clone()),
),
contained_ty,
))
} else {
Some(StackValue(
kind.derive(ptr),
TypeKind::CodegenPtr(Box::new(contained_ty)),
))
}
}
mir::ExprKind::Array(expressions) => {
let stack_value_list: Vec<_> =
try_all(expressions.iter().map(|e| e.codegen(scope, state)).collect::<Vec<_>>())
.map_err(|e| e.first().cloned().unwrap())?
.into_iter()
.map(|v| v.unwrap())
.collect();
let instr_list = stack_value_list.iter().map(|s| s.instr()).collect::<Vec<_>>();
let elem_ty_kind = stack_value_list
.iter()
.map(|s| s.1.clone())
.next()
.unwrap_or(TypeKind::Void);
let array_ty = Type::Array(
Box::new(elem_ty_kind.get_type(scope.type_values)),
instr_list.len() as u64,
);
let array_name = format!("{}.{}", elem_ty_kind, instr_list.len());
let load_n = format!("{}.load", array_name);
let array = scope
.allocate(
&self.1,
&TypeKind::Array(Box::new(elem_ty_kind.clone()), expressions.len() as u64),
)
.unwrap()
.maybe_location(&mut scope.block, location.clone());
for (index, instr) in instr_list.iter().enumerate() {
let gep_n = format!("{}.{}.gep", array_name, index);
let store_n = format!("{}.{}.store", array_name, index);
let index_expr = scope
.block
.build_named(index.to_string(), Instr::Constant(ConstValueKind::U32(index as u32)))
.unwrap();
let first = scope
.block
.build_named("zero", Instr::Constant(ConstValueKind::U32(0)))
.unwrap();
let ptr = scope
.block
.build_named(gep_n, Instr::GetElemPtr(array, vec![first, index_expr]))
.unwrap()
.maybe_location(&mut scope.block, location.clone());
scope
.block
.build_named(store_n, Instr::Store(ptr, *instr))
.unwrap()
.maybe_location(&mut scope.block, location.clone());
}
let array_val = scope
.block
.build_named(load_n, Instr::Load(array, array_ty))
.unwrap()
.maybe_location(&mut scope.block, location.clone());
Some(StackValue(
StackValueKind::Literal(array_val),
TypeKind::Array(Box::new(elem_ty_kind), instr_list.len() as u64),
))
}
mir::ExprKind::Accessed(expression, type_kind, field) => {
let struct_val = expression.codegen(scope, &state.load(false))?.unwrap();
let TypeKind::CodegenPtr(inner) = &struct_val.1 else {
panic!("tried accessing non-pointer");
};
let TypeKind::CustomType(key) = *inner.clone() else {
panic!("tried accessing non-custom-type");
};
let TypeDefinitionKind::Struct(struct_ty) = scope.get_typedef(&key).unwrap().kind.clone();
let idx = struct_ty.find_index(field).unwrap();
let gep_n = format!("{}.{}.gep", key.0, field);
let load_n = format!("{}.{}.load", key.0, field);
let value = scope
.block
.build_named(gep_n, Instr::GetStructElemPtr(struct_val.instr(), idx as u32))
.unwrap();
// value.maybe_location(&mut scope.block, location);
if state.should_load {
Some(StackValue(
struct_val.0.derive(
scope
.block
.build_named(load_n, Instr::Load(value, type_kind.get_type(scope.type_values)))
.unwrap(),
),
struct_ty.get_field_ty(&field).unwrap().clone(),
))
} else {
Some(StackValue(
struct_val.0.derive(value),
TypeKind::CodegenPtr(Box::new(struct_ty.get_field_ty(&field).unwrap().clone())),
))
}
}
mir::ExprKind::Struct(name, items) => {
let type_key = CustomTypeKey(name.clone(), scope.module_id);
let ty = Type::CustomType({
let Some(a) = scope.type_values.get(&type_key) else {
return Ok(None);
};
*a
});
let TypeDefinition {
kind: TypeDefinitionKind::Struct(struct_ty),
..
} = scope.types.get(scope.type_values.get(&type_key).unwrap()).unwrap();
let indices = struct_ty.0.iter().enumerate();
let load_n = format!("{}.load", name);
let struct_ptr = scope
.allocate(&self.1, &TypeKind::CustomType(type_key.clone()))
.unwrap()
.maybe_location(&mut scope.block, location.clone());
for (field_n, exp) in items {
let gep_n = format!("{}.{}.gep", name, field_n);
let store_n = format!("{}.{}.store", name, field_n);
let i = indices.clone().find(|(_, f)| f.0 == *field_n).unwrap().0;
let elem_ptr = scope
.block
.build_named(gep_n, Instr::GetStructElemPtr(struct_ptr, i as u32))
.unwrap()
.maybe_location(&mut scope.block, location.clone());
if let Some(val) = exp.codegen(scope, state)? {
scope
.block
.build_named(store_n, Instr::Store(elem_ptr, val.instr()))
.unwrap()
.maybe_location(&mut scope.block, location.clone());
}
}
let struct_val = scope.block.build_named(load_n, Instr::Load(struct_ptr, ty)).unwrap();
Some(StackValue(
StackValueKind::Literal(struct_val),
TypeKind::CustomType(type_key),
))
}
mir::ExprKind::Borrow(expr, mutable) => {
let v = expr.codegen(scope, &state.load(false))?.unwrap();
let TypeKind::CodegenPtr(ptr_inner) = &v.1 else {
panic!();
};
Some(StackValue(
StackValueKind::mutable(*mutable, v.0.instr()),
TypeKind::Borrow(Box::new(*ptr_inner.clone()), *mutable),
))
}
mir::ExprKind::Deref(expr) => {
let v = expr.codegen(scope, &state.load(false))?.unwrap();
let TypeKind::CodegenPtr(ptr_inner) = &v.1 else {
panic!();
};
let var_ptr_instr = scope
.block
.build_named(
format!("{}.deref", expr.backing_var().unwrap().1),
Instr::Load(v.0.instr(), ptr_inner.get_type(scope.type_values)),
)
.unwrap();
Some({
if state.should_load {
if let TypeKind::Borrow(inner, _) = *ptr_inner.clone() {
StackValue(
v.0.derive(
scope
.block
.build_named(
format!("{}.deref.inner", expr.backing_var().unwrap().1),
Instr::Load(var_ptr_instr, inner.get_type(scope.type_values)),
)
.unwrap(),
),
*inner.clone(),
)
} else {
panic!("Variable was not a pointer?!?")
}
} else {
let TypeKind::Borrow(borrow_inner, mutable) = *ptr_inner.clone() else {
panic!();
};
StackValue(
StackValueKind::mutable(mutable, var_ptr_instr),
TypeKind::CodegenPtr(borrow_inner.clone()),
)
}
})
}
mir::ExprKind::CastTo(expression, type_kind) => {
let val = expression.codegen(scope, state)?;
let Some(val) = val else { return Ok(None) };
if val.1 == *type_kind {
Some(val)
} else {
match (&val.1, type_kind) {
(TypeKind::CodegenPtr(inner), TypeKind::UserPtr(_)) => match *inner.clone() {
TypeKind::UserPtr(_) => Some(StackValue(
val.0.derive(
scope
.block
.build(Instr::BitCast(
val.instr(),
Type::Ptr(Box::new(type_kind.get_type(scope.type_values))),
))
.unwrap(),
),
TypeKind::CodegenPtr(Box::new(type_kind.clone())),
)),
_ => panic!(),
},
(TypeKind::UserPtr(_), TypeKind::UserPtr(_))
| (TypeKind::Char, TypeKind::U8)
| (TypeKind::U8, TypeKind::Char)
| (TypeKind::U8, TypeKind::I8) => Some(StackValue(
val.0.derive(
scope
.block
.build(Instr::BitCast(val.instr(), type_kind.get_type(scope.type_values)))
.unwrap(),
),
type_kind.clone(),
)),
_ => {
let cast_instr = val
.1
.get_type(scope.type_values)
.cast_instruction(val.instr(), &type_kind.get_type(scope.type_values))
.unwrap();
Some(StackValue(
val.0.derive(scope.block.build(cast_instr).unwrap()),
type_kind.clone(),
))
}
}
}
}
mir::ExprKind::AssociatedFunctionCall(ty, call) => codegen_function_call(Some(ty), call, scope, state)?,
};
if let Some(value) = &value {
value.instr().maybe_location(&mut scope.block, location.clone());
}
Ok(value)
}
}
fn codegen_function_call<'ctx, 'a>(
associated_type: Option<&TypeKind>,
call: &FunctionCall,
scope: &mut Scope<'ctx, 'a>,
state: &State,
) -> Result<Option<StackValue>, ErrorKind> {
let ret_type_kind = call.return_type.known().expect("function return type unknown");
let call_name = if let Some(ty) = &associated_type {
format!("{}::{}", ty, call.name)
} else {
String::from(call.name.clone())
};
let ret_type = ret_type_kind.get_type(scope.type_values);
let params = try_all(
call.parameters
.iter()
.map(|e| e.codegen(scope, state))
.collect::<Vec<_>>(),
)
.map_err(|e| e.first().cloned().unwrap())?
.into_iter()
.map(|v| v.unwrap())
.collect::<Vec<_>>();
let location = if let Some(debug) = &scope.debug {
call.meta.into_debug(scope.tokens, &debug.scope)
} else {
None
};
let val = if let Some(ty) = associated_type {
// Unwrap type from borrow if it is in a borrow
let ty = if let TypeKind::Borrow(inner, _) = ty { inner } else { ty };
let assoc_key = AssociatedFunctionKey(ty.clone(), call.name.clone());
let intrinsic_def = get_intrinsic_assoc_func(&ty, &call.name);
let intrinsic = intrinsic_def.map(|func_def| {
let FunctionDefinitionKind::Intrinsic(intrinsic) = func_def.kind else {
panic!();
};
ScopeFunctionKind::IntrinsicOwned(intrinsic)
});
let callee = scope
.assoc_functions
.get(&assoc_key)
.or(intrinsic.as_ref())
.expect(&format!("Function {} does not exist!", call_name));
callee
.codegen(&call_name, params.as_slice(), &call.return_type, location, scope)
.unwrap()
} else {
let callee = scope
.functions
.get(&call.name)
.expect(&format!("Function {} does not exist!", call_name));
callee
.codegen(&call_name, params.as_slice(), &call.return_type, location, scope)
.unwrap()
};
let ptr = if ret_type_kind != TypeKind::Void {
let ptr = scope
.allocator
.borrow_mut()
.allocate(&call.meta, &call.return_type)
.unwrap();
scope
.block
.build_named(format!("{}.store", call_name), Instr::Store(ptr, val.instr()))
.unwrap();
Some(ptr)
} else {
None
};
Ok(if let Some(ptr) = ptr {
if state.should_load {
Some(StackValue(
StackValueKind::Immutable(
scope
.block
.build_named(call.name.clone(), Instr::Load(ptr, ret_type))
.unwrap(),
),
ret_type_kind,
))
} else {
Some(StackValue(
StackValueKind::Immutable(ptr),
TypeKind::CodegenPtr(Box::new(ret_type_kind)),
))
}
} else {
None
})
}
impl mir::IfExpression {
fn codegen<'ctx, 'a>(&self, scope: &mut Scope<'ctx, 'a>, state: &State) -> Result<Option<StackValue>, ErrorKind> {
let condition = self.0.codegen(scope, state)?.unwrap();
// Create blocks
let mut then_b = scope.function.block("then");
let mut else_b = scope.function.block("else");
let after_b = scope.function.block("after");
if let Some(debug) = &scope.debug {
let before_location = self.0 .1.into_debug(scope.tokens, &debug.scope).unwrap();
let before_v = debug.info.location(&debug.scope, before_location);
scope.block.set_terminator_location(before_v).ok();
let then_location = self.1 .1.into_debug(scope.tokens, &debug.scope).unwrap();
let then_v = debug.info.location(&debug.scope, then_location.clone());
then_b.set_terminator_location(then_v).unwrap();
let else_location = if let Some(else_expr) = self.2.as_ref() {
else_expr.1.into_debug(scope.tokens, &debug.scope).unwrap()
} else {
then_location
};
let else_v = debug.info.location(&debug.scope, else_location);
else_b.set_terminator_location(else_v).unwrap();
}
// Store for convenience
let then_bb = then_b.value();
let else_bb = else_b.value();
let after_bb = after_b.value();
// Generate then-block content
let mut then_scope = scope.with_block(then_b);
let then_res = self.1.codegen(&mut then_scope, state)?;
then_scope.block.terminate(Term::Br(after_bb)).ok();
let else_res = if let Some(else_expr) = self.2.as_ref() {
let mut else_scope = scope.with_block(else_b);
scope
.block
.terminate(Term::CondBr(condition.instr(), then_bb, else_bb))
.unwrap();
let opt = else_expr.codegen(&mut else_scope, state)?;
else_scope.block.terminate(Term::Br(after_bb)).ok();
if let Some(ret) = opt {
Some(ret)
} else {
None
}
} else {
else_b.terminate(Term::Br(after_bb)).unwrap();
scope
.block
.terminate(Term::CondBr(condition.instr(), then_bb, after_bb))
.unwrap();
None
};
// Swap block to the after-block so that construction can continue correctly
scope.swap_block(after_b);
if then_res.is_none() && else_res.is_none() {
Ok(None)
} else {
let mut incoming = Vec::from(then_res.as_slice());
incoming.extend(else_res.clone());
let instr = scope
.block
.build_named("phi", Instr::Phi(incoming.iter().map(|i| i.instr()).collect()))
.unwrap();
use StackValueKind::*;
let value = match (then_res, else_res) {
(None, None) => StackValue(StackValueKind::Immutable(instr), TypeKind::Void),
(Some(val), None) | (None, Some(val)) => StackValue(val.0.derive(instr), val.1),
(Some(lhs_val), Some(rhs_val)) => match (lhs_val.0, rhs_val.0) {
(Immutable(_), Immutable(_))
| (Immutable(_), Mutable(_))
| (Mutable(_), Immutable(_))
| (Immutable(_), Literal(_))
| (Literal(_), Immutable(_))
| (Mutable(_), Literal(_))
| (Literal(_), Mutable(_))
| (Literal(_), Literal(_)) => StackValue(Immutable(instr), lhs_val.1),
(Mutable(_), Mutable(_)) => StackValue(Mutable(instr), lhs_val.1),
},
};
Ok(Some(value))
}
}
}