Compare commits

..

6 Commits

14 changed files with 1266 additions and 1241 deletions

View File

@ -1,105 +1,60 @@
use reid_lib::{ use reid_lib::{ConstValue, Context, InstructionKind, IntPredicate, TerminatorKind, Type};
Context, IntPredicate,
types::{BasicType, IntegerValue, Value},
};
pub fn main() { fn main() {
// Notes from inkwell: use ConstValue::*;
// - Creating new values should probably just be functions in the context use InstructionKind::*;
// - Creating functions should probably be functions from module
// - Builder could well be it's own struct
// - Although, I do like the fact where blocks move the builder by itself..
let context = Context::new(); let context = Context::new();
let module = context.module("testmodule"); let mut module = context.module("test");
let int_32 = context.type_i32(); let main = module.function("main", Type::I32, Vec::new());
let mut m_entry = main.block("entry");
let fibonacci = module.add_function(int_32.function_type(vec![int_32.into()]), "fibonacci"); let fibonacci = module.function("fibonacci", Type::I32, vec![Type::I32]);
let mut f_main = fibonacci.block("main");
let param = fibonacci let arg = m_entry.build(Constant(I32(5))).unwrap();
.get_param::<IntegerValue>(0, int_32.into()) let fibonacci_call = m_entry
.build(FunctionCall(fibonacci.value(), vec![arg]))
.unwrap(); .unwrap();
let mut cmp = f_main m_entry
.integer_compare(&param, &int_32.from_unsigned(3), &IntPredicate::ULT, "cmp") .terminate(TerminatorKind::Ret(fibonacci_call))
.unwrap(); .unwrap();
let mut done = fibonacci.block("done"); let mut f_entry = fibonacci.block("entry");
let mut recurse = fibonacci.block("recurse");
f_main.conditional_br(&cmp, &done, &recurse).unwrap();
done.ret(&int_32.from_unsigned(1)).unwrap(); let num_3 = f_entry.build(Constant(I32(3))).unwrap();
let param_n = f_entry.build(Param(0)).unwrap();
let minus_one = recurse let cond = f_entry
.sub(&param, &int_32.from_unsigned(1), "minus_one") .build(ICmp(IntPredicate::LessThan, param_n, num_3))
.unwrap();
let minus_two = recurse
.sub(&param, &int_32.from_unsigned(2), "minus_two")
.unwrap();
let one: IntegerValue = recurse
.call(&fibonacci, vec![Value::Integer(minus_one)], "call_one")
.unwrap();
let two = recurse
.call(&fibonacci, vec![Value::Integer(minus_two)], "call_two")
.unwrap(); .unwrap();
let add = recurse.add(&one, &two, "add").unwrap(); let mut then_b = fibonacci.block("then");
let mut else_b = fibonacci.block("else");
recurse.ret(&add).unwrap(); f_entry
.terminate(TerminatorKind::CondBr(cond, then_b.value(), else_b.value()))
let main_f = module.add_function(int_32.function_type(Vec::new()), "main");
let mut main_b = main_f.block("main");
let call: IntegerValue = main_b
.call(
&fibonacci,
vec![Value::Integer(int_32.from_unsigned(8))],
"fib_call",
)
.unwrap(); .unwrap();
main_b.ret(&call).unwrap();
// let secondary = module.add_function(int_32.function_type(&[]), "secondary"); let ret_const = then_b.build(Constant(I32(1))).unwrap();
// let s_entry = secondary.block("entry"); then_b.terminate(TerminatorKind::Ret(ret_const)).unwrap();
// s_entry.ret(&int_32.from_signed(54)).unwrap();
// let function = module.add_function(int_32.function_type(&[]), "main"); let const_1 = else_b.build(Constant(I32(1))).unwrap();
let const_2 = else_b.build(Constant(I32(2))).unwrap();
let param_1 = else_b.build(Sub(param_n, const_1)).unwrap();
let param_2 = else_b.build(Sub(param_n, const_2)).unwrap();
let call_1 = else_b
.build(FunctionCall(fibonacci.value(), vec![param_1]))
.unwrap();
let call_2 = else_b
.build(FunctionCall(fibonacci.value(), vec![param_2]))
.unwrap();
// let entry = function.block("entry"); let add = else_b.build(Add(call_1, call_2)).unwrap();
// let call = entry.call(&secondary, vec![], "call").unwrap(); else_b.terminate(TerminatorKind::Ret(add)).unwrap();
// let add = entry.add(&int_32.from_signed(100), &call, "add").unwrap();
// let rhs_cmp = int_32.from_signed(200);
// let cond_res = entry dbg!(&context);
// .integer_compare(&add, &rhs_cmp, &IntPredicate::SLT, "cmp")
// .unwrap();
// let (lhs, rhs) = entry.conditional_br(&cond_res, "lhs", "rhs").unwrap(); context.compile();
// let left = lhs.add(&call, &int_32.from_signed(20), "add").unwrap();
// let right = rhs.add(&call, &int_32.from_signed(30), "add").unwrap();
// let final_block = function.block("final");
// let phi = final_block
// .phi::<IntegerValue>(&int_32, "phi")
// .unwrap()
// .add_incoming(&left, &lhs)
// .add_incoming(&right, &rhs)
// .build();
// lhs.br(&final_block).unwrap();
// rhs.br(&final_block).unwrap();
// let val = final_block
// .add(&phi, &int_32.from_signed(11), "add")
// .unwrap();
// final_block.ret(&val).unwrap();
match module.print_to_string() {
Ok(v) => println!("{}", v),
Err(e) => println!("Err: {:?}", e),
}
} }

View File

@ -0,0 +1,348 @@
use std::{cell::RefCell, marker::PhantomData, rc::Rc};
use crate::{
BlockData, ConstValue, FunctionData, InstructionData, InstructionKind, ModuleData,
TerminatorKind, Type, util::match_types,
};
#[derive(Debug, Clone, Hash, Copy, PartialEq, Eq)]
pub struct ModuleValue(usize);
#[derive(Debug, Clone, Hash, Copy, PartialEq, Eq)]
pub struct FunctionValue(ModuleValue, usize);
#[derive(Debug, Clone, Hash, Copy, PartialEq, Eq)]
pub struct BlockValue(FunctionValue, usize);
#[derive(Debug, Clone, Hash, Copy, PartialEq, Eq)]
pub struct InstructionValue(pub(crate) BlockValue, usize);
#[derive(Debug, Clone)]
pub struct ModuleHolder {
pub(crate) value: ModuleValue,
pub(crate) data: ModuleData,
pub(crate) functions: Vec<FunctionHolder>,
}
#[derive(Debug, Clone)]
pub struct FunctionHolder {
pub(crate) value: FunctionValue,
pub(crate) data: FunctionData,
pub(crate) blocks: Vec<BlockHolder>,
}
#[derive(Debug, Clone)]
pub struct BlockHolder {
pub(crate) value: BlockValue,
pub(crate) data: BlockData,
pub(crate) instructions: Vec<InstructionHolder>,
}
#[derive(Debug, Clone)]
pub struct InstructionHolder {
pub(crate) value: InstructionValue,
pub(crate) data: InstructionData,
}
#[derive(Debug, Clone)]
pub struct Builder {
modules: Rc<RefCell<Vec<ModuleHolder>>>,
}
impl Builder {
pub fn new() -> Builder {
Builder {
modules: Rc::new(RefCell::new(Vec::new())),
}
}
pub(crate) fn add_module(&self, data: ModuleData) -> ModuleValue {
let value = ModuleValue(self.modules.borrow().len());
self.modules.borrow_mut().push(ModuleHolder {
value,
data,
functions: Vec::new(),
});
value
}
pub(crate) unsafe fn add_function(
&self,
mod_val: &ModuleValue,
data: FunctionData,
) -> FunctionValue {
unsafe {
let mut modules = self.modules.borrow_mut();
let module = modules.get_unchecked_mut(mod_val.0);
let value = FunctionValue(module.value, module.functions.len());
module.functions.push(FunctionHolder {
value,
data,
blocks: Vec::new(),
});
value
}
}
pub(crate) unsafe fn add_block(&self, fun_val: &FunctionValue, data: BlockData) -> BlockValue {
unsafe {
let mut modules = self.modules.borrow_mut();
let module = modules.get_unchecked_mut(fun_val.0.0);
let function = module.functions.get_unchecked_mut(fun_val.1);
let value = BlockValue(function.value, function.blocks.len());
function.blocks.push(BlockHolder {
value,
data,
instructions: Vec::new(),
});
value
}
}
pub(crate) unsafe fn add_instruction(
&self,
block_val: &BlockValue,
data: InstructionData,
) -> Result<InstructionValue, ()> {
unsafe {
let mut modules = self.modules.borrow_mut();
let module = modules.get_unchecked_mut(block_val.0.0.0);
let function = module.functions.get_unchecked_mut(block_val.0.1);
let block = function.blocks.get_unchecked_mut(block_val.1);
let value = InstructionValue(block.value, block.instructions.len());
block.instructions.push(InstructionHolder { value, data });
// Drop modules so that it is no longer mutable borrowed
// (check_instruction requires an immutable borrow).
drop(modules);
self.check_instruction(&value)?;
Ok(value)
}
}
pub(crate) unsafe fn terminate(
&self,
block: &BlockValue,
value: TerminatorKind,
) -> Result<(), ()> {
unsafe {
let mut modules = self.modules.borrow_mut();
let module = modules.get_unchecked_mut(block.0.0.0);
let function = module.functions.get_unchecked_mut(block.0.1);
let block = function.blocks.get_unchecked_mut(block.1);
if let Some(_) = &block.data.terminator {
Err(())
} else {
block.data.terminator = Some(value);
Ok(())
}
}
}
pub(crate) unsafe fn module_data(&self, value: &ModuleValue) -> ModuleData {
unsafe { self.modules.borrow().get_unchecked(value.0).data.clone() }
}
pub(crate) unsafe fn function_data(&self, value: &FunctionValue) -> FunctionData {
unsafe {
self.modules
.borrow()
.get_unchecked(value.0.0)
.functions
.get_unchecked(value.1)
.data
.clone()
}
}
pub(crate) unsafe fn block_data(&self, value: &BlockValue) -> BlockData {
unsafe {
self.modules
.borrow()
.get_unchecked(value.0.0.0)
.functions
.get_unchecked(value.0.1)
.blocks
.get_unchecked(value.1)
.data
.clone()
}
}
pub(crate) unsafe fn instr_data(&self, value: &InstructionValue) -> InstructionData {
unsafe {
self.modules
.borrow()
.get_unchecked(value.0.0.0.0)
.functions
.get_unchecked(value.0.0.1)
.blocks
.get_unchecked(value.0.1)
.instructions
.get_unchecked(value.1)
.data
.clone()
}
}
pub(crate) fn get_modules(&self) -> Rc<RefCell<Vec<ModuleHolder>>> {
self.modules.clone()
}
// pub(crate) fn get_functions(&self, module: ModuleValue) -> Vec<(FunctionValue, FunctionData)> {
// unsafe {
// self.modules
// .borrow()
// .get_unchecked(module.0)
// .2
// .iter()
// .map(|h| (h.0, h.1.clone()))
// .collect()
// }
// }
// pub(crate) fn get_blocks(&self, function: FunctionValue) -> Vec<(BlockValue, BlockData)> {
// unsafe {
// self.modules
// .borrow()
// .get_unchecked(function.0.0)
// .2
// .get_unchecked(function.1)
// .2
// .iter()
// .map(|h| (h.0, h.1.clone()))
// .collect()
// }
// }
// pub(crate) fn get_instructions(
// &self,
// block: BlockValue,
// ) -> (
// Vec<(InstructionValue, InstructionData)>,
// Option<TerminatorKind>,
// ) {
// unsafe {
// let modules = self.modules.borrow();
// let block = modules
// .get_unchecked(block.0.0.0)
// .2
// .get_unchecked(block.0.1)
// .2
// .get_unchecked(block.1);
// (
// block.2.iter().map(|h| (h.0, h.1.clone())).collect(),
// block.1.terminator.clone(),
// )
// }
// }
pub fn check_instruction(&self, instruction: &InstructionValue) -> Result<(), ()> {
use super::InstructionKind::*;
unsafe {
match self.instr_data(&instruction).kind {
Param(_) => Ok(()),
Constant(_) => Ok(()),
Add(lhs, rhs) => match_types(&lhs, &rhs, &self).map(|_| ()),
Sub(lhs, rhs) => match_types(&lhs, &rhs, &self).map(|_| ()),
ICmp(_, lhs, rhs) => {
let t = match_types(&lhs, &rhs, self)?;
if t.comparable() {
Ok(())
} else {
Err(()) // TODO error: Types not comparable
}
}
FunctionCall(fun, params) => {
let param_types = self.function_data(&fun).params;
if param_types.len() != params.len() {
return Err(()); // TODO error: invalid amount of params
}
for (a, b) in param_types.iter().zip(params) {
if *a != b.get_type(&self)? {
return Err(()); // TODO error: params do not match
}
}
Ok(())
}
Phi(vals) => {
let mut iter = vals.iter();
// TODO error: Phi must contain at least one item
let first = iter.next().ok_or(())?;
for item in iter {
match_types(first, item, &self)?;
}
Ok(())
}
}
}
}
}
impl InstructionValue {
pub fn get_type(&self, builder: &Builder) -> Result<Type, ()> {
use InstructionKind::*;
use Type::*;
unsafe {
match &builder.instr_data(self).kind {
Param(nth) => builder
.function_data(&self.0.0)
.params
.get(*nth)
.copied()
.ok_or(()),
Constant(c) => Ok(c.get_type()),
Add(lhs, rhs) => match_types(lhs, rhs, &builder),
Sub(lhs, rhs) => match_types(lhs, rhs, &builder),
ICmp(pred, lhs, rhs) => Ok(Type::Bool),
FunctionCall(function_value, _) => Ok(builder.function_data(function_value).ret),
Phi(values) => values.first().ok_or(()).and_then(|v| v.get_type(&builder)),
}
}
}
}
impl ConstValue {
pub fn get_type(&self) -> Type {
use Type::*;
match self {
ConstValue::I32(_) => I32,
ConstValue::I16(_) => I16,
ConstValue::U32(_) => U32,
}
}
}
impl Type {
pub fn comparable(&self) -> bool {
match self {
Type::I32 => true,
Type::I16 => true,
Type::U32 => true,
Type::Bool => true,
Type::Void => false,
}
}
pub fn signed(&self) -> bool {
match self {
Type::I32 => true,
Type::I16 => true,
Type::U32 => false,
Type::Bool => false,
Type::Void => false,
}
}
}
impl TerminatorKind {
pub fn get_type(&self, builder: &Builder) -> Result<Type, ()> {
use TerminatorKind::*;
match self {
Ret(instr_val) => instr_val.get_type(builder),
Branch(_) => Ok(Type::Void),
CondBr(_, _, _) => Ok(Type::Void),
}
}
}

View File

@ -0,0 +1,386 @@
use std::{collections::HashMap, ffi::CString, hash::Hash, process::Termination, ptr::null_mut};
use llvm_sys::{
LLVMIntPredicate,
analysis::LLVMVerifyModule,
core::*,
prelude::*,
target::{
LLVM_InitializeAllAsmParsers, LLVM_InitializeAllAsmPrinters, LLVM_InitializeAllTargetInfos,
LLVM_InitializeAllTargetMCs, LLVM_InitializeAllTargets, LLVMSetModuleDataLayout,
},
target_machine::{
LLVMCodeGenFileType, LLVMCreateTargetDataLayout, LLVMCreateTargetMachine,
LLVMGetDefaultTargetTriple, LLVMGetTargetFromTriple, LLVMTargetMachineEmitToFile,
},
};
use crate::util::{ErrorMessageHolder, from_cstring, into_cstring};
use super::{
ConstValue, Context, Function, IntPredicate, Module, TerminatorKind, Type,
builder::{
BlockHolder, BlockValue, Builder, FunctionHolder, FunctionValue, InstructionHolder,
InstructionValue, ModuleHolder,
},
};
pub struct LLVMContext {
context_ref: LLVMContextRef,
builder_ref: LLVMBuilderRef,
}
impl Context {
pub fn compile(&self) {
unsafe {
let context_ref = LLVMContextCreate();
let context = LLVMContext {
context_ref,
builder_ref: LLVMCreateBuilderInContext(context_ref),
};
for holder in self.builder.get_modules().borrow().iter() {
holder.compile(&context, &self.builder);
}
LLVMDisposeBuilder(context.builder_ref);
LLVMContextDispose(context.context_ref);
}
}
}
pub struct LLVMModule<'a> {
builder: &'a Builder,
context_ref: LLVMContextRef,
builder_ref: LLVMBuilderRef,
module_ref: LLVMModuleRef,
functions: HashMap<FunctionValue, LLVMFunction>,
blocks: HashMap<BlockValue, LLVMBasicBlockRef>,
values: HashMap<InstructionValue, LLVMValue>,
}
#[derive(Clone, Copy)]
pub struct LLVMFunction {
type_ref: LLVMTypeRef,
value_ref: LLVMValueRef,
}
pub struct LLVMValue {
ty: Type,
value_ref: LLVMValueRef,
}
impl ModuleHolder {
fn compile(&self, context: &LLVMContext, builder: &Builder) {
unsafe {
let module_ref = LLVMModuleCreateWithNameInContext(
into_cstring(&self.data.name).as_ptr(),
context.context_ref,
);
// Compile the contents
let mut functions = HashMap::new();
for function in &self.functions {
functions.insert(
function.value,
function.compile_signature(context, module_ref),
);
}
let mut module = LLVMModule {
builder,
context_ref: context.context_ref,
builder_ref: context.builder_ref,
module_ref,
functions,
blocks: HashMap::new(),
values: HashMap::new(),
};
for function in &self.functions {
function.compile(&mut module);
}
LLVM_InitializeAllTargets();
LLVM_InitializeAllTargetInfos();
LLVM_InitializeAllTargetMCs();
LLVM_InitializeAllAsmParsers();
LLVM_InitializeAllAsmPrinters();
let triple = LLVMGetDefaultTargetTriple();
let mut target: _ = null_mut();
let mut err = ErrorMessageHolder::null();
LLVMGetTargetFromTriple(triple, &mut target, err.borrow_mut());
println!("{:?}, {:?}", from_cstring(triple), target);
err.into_result().unwrap();
let target_machine = LLVMCreateTargetMachine(
target,
triple,
c"generic".as_ptr(),
c"".as_ptr(),
llvm_sys::target_machine::LLVMCodeGenOptLevel::LLVMCodeGenLevelNone,
llvm_sys::target_machine::LLVMRelocMode::LLVMRelocDefault,
llvm_sys::target_machine::LLVMCodeModel::LLVMCodeModelDefault,
);
let data_layout = LLVMCreateTargetDataLayout(target_machine);
LLVMSetTarget(module_ref, triple);
LLVMSetModuleDataLayout(module_ref, data_layout);
let mut err = ErrorMessageHolder::null();
LLVMVerifyModule(
module_ref,
llvm_sys::analysis::LLVMVerifierFailureAction::LLVMPrintMessageAction,
err.borrow_mut(),
);
err.into_result().unwrap();
let mut err = ErrorMessageHolder::null();
LLVMTargetMachineEmitToFile(
target_machine,
module_ref,
CString::new("hello.asm").unwrap().into_raw(),
LLVMCodeGenFileType::LLVMAssemblyFile,
err.borrow_mut(),
);
err.into_result().unwrap();
let mut err = ErrorMessageHolder::null();
LLVMTargetMachineEmitToFile(
target_machine,
module_ref,
CString::new("hello.o").unwrap().into_raw(),
LLVMCodeGenFileType::LLVMObjectFile,
err.borrow_mut(),
);
err.into_result().unwrap();
let module_str = from_cstring(LLVMPrintModuleToString(module_ref));
println!("{}", module_str.unwrap());
}
}
}
impl FunctionHolder {
unsafe fn compile_signature(
&self,
context: &LLVMContext,
module_ref: LLVMModuleRef,
) -> LLVMFunction {
unsafe {
let ret_type = self.data.ret.as_llvm(context.context_ref);
let mut param_types: Vec<LLVMTypeRef> = self
.data
.params
.iter()
.map(|t| t.as_llvm(context.context_ref))
.collect();
let param_ptr = param_types.as_mut_ptr();
let param_len = param_types.len();
let fn_type = LLVMFunctionType(ret_type, param_ptr, param_len as u32, 0);
let function_ref =
LLVMAddFunction(module_ref, into_cstring(&self.data.name).as_ptr(), fn_type);
LLVMFunction {
type_ref: fn_type,
value_ref: function_ref,
}
}
}
unsafe fn compile(&self, module: &mut LLVMModule) {
unsafe {
let own_function = *module.functions.get(&self.value).unwrap();
for block in &self.blocks {
let block_ref = LLVMCreateBasicBlockInContext(
module.context_ref,
into_cstring(&self.data.name).as_ptr(),
);
LLVMAppendExistingBasicBlock(own_function.value_ref, block_ref);
module.blocks.insert(block.value, block_ref);
}
for block in &self.blocks {
block.compile(module, &own_function);
}
}
}
}
impl BlockHolder {
unsafe fn compile(&self, module: &mut LLVMModule, function: &LLVMFunction) {
unsafe {
let block_ref = *module.blocks.get(&self.value).unwrap();
LLVMPositionBuilderAtEnd(module.builder_ref, block_ref);
for instruction in &self.instructions {
let key = instruction.value;
let ret = instruction.compile(module, function, block_ref);
module.values.insert(key, ret);
}
self.data
.terminator
.clone()
.expect(&format!(
"Block {} does not have a terminator!",
self.data.name
))
.compile(module, function, block_ref);
}
}
}
impl InstructionHolder {
unsafe fn compile(
&self,
module: &LLVMModule,
function: &LLVMFunction,
block: LLVMBasicBlockRef,
) -> LLVMValue {
let ty = self.value.get_type(module.builder).unwrap();
let val = unsafe {
use super::InstructionKind::*;
match &self.data.kind {
Param(nth) => LLVMGetParam(function.value_ref, *nth as u32),
Constant(val) => val.as_llvm(module.context_ref),
Add(lhs, rhs) => {
let lhs_val = module.values.get(&lhs).unwrap().value_ref;
let rhs_val = module.values.get(&rhs).unwrap().value_ref;
LLVMBuildAdd(module.builder_ref, lhs_val, rhs_val, c"add".as_ptr())
}
Sub(lhs, rhs) => {
let lhs_val = module.values.get(&lhs).unwrap().value_ref;
let rhs_val = module.values.get(&rhs).unwrap().value_ref;
LLVMBuildSub(module.builder_ref, lhs_val, rhs_val, c"sub".as_ptr())
}
ICmp(pred, lhs, rhs) => {
let lhs_val = module.values.get(&lhs).unwrap().value_ref;
let rhs_val = module.values.get(&rhs).unwrap().value_ref;
LLVMBuildICmp(
module.builder_ref,
pred.as_llvm(ty.signed()),
lhs_val,
rhs_val,
c"icmp".as_ptr(),
)
}
FunctionCall(function_value, instruction_values) => {
let fun = module.functions.get(&function_value).unwrap();
let mut param_list: Vec<LLVMValueRef> = instruction_values
.iter()
.map(|i| module.values.get(i).unwrap().value_ref)
.collect();
LLVMBuildCall2(
module.builder_ref,
fun.type_ref,
fun.value_ref,
param_list.as_mut_ptr(),
param_list.len() as u32,
c"call".as_ptr(),
)
}
Phi(values) => {
let mut inc_values = Vec::new();
let mut inc_blocks = Vec::new();
for item in values {
inc_values.push(module.values.get(&item).unwrap().value_ref);
inc_blocks.push(*module.blocks.get(&item.0).unwrap());
}
let phi = LLVMBuildPhi(
module.builder_ref,
ty.as_llvm(module.context_ref),
c"phi".as_ptr(),
);
LLVMAddIncoming(
phi,
inc_values.as_mut_ptr(),
inc_blocks.as_mut_ptr(),
values.len() as u32,
);
phi
}
}
};
LLVMValue { ty, value_ref: val }
}
}
impl TerminatorKind {
fn compile(
&self,
module: &LLVMModule,
function: &LLVMFunction,
block: LLVMBasicBlockRef,
) -> LLVMValue {
let ty = self.get_type(module.builder).unwrap();
let val = unsafe {
match self {
TerminatorKind::Ret(val) => {
let value = module.values.get(val).unwrap();
LLVMBuildRet(module.builder_ref, value.value_ref)
}
TerminatorKind::Branch(block_value) => {
let dest = *module.blocks.get(block_value).unwrap();
LLVMBuildBr(module.builder_ref, dest)
}
TerminatorKind::CondBr(cond, then_b, else_b) => {
let cond_val = module.values.get(cond).unwrap().value_ref;
let then_bb = *module.blocks.get(then_b).unwrap();
let else_bb = *module.blocks.get(else_b).unwrap();
LLVMBuildCondBr(module.builder_ref, cond_val, then_bb, else_bb)
}
}
};
LLVMValue { ty, value_ref: val }
}
}
impl IntPredicate {
fn as_llvm(&self, signed: bool) -> LLVMIntPredicate {
use IntPredicate::*;
use LLVMIntPredicate::*;
match (self, signed) {
(LessThan, true) => LLVMIntSLT,
(GreaterThan, true) => LLVMIntSGT,
(LessThan, false) => LLVMIntULT,
(GreaterThan, false) => LLVMIntUGT,
}
}
}
impl ConstValue {
fn as_llvm(&self, context: LLVMContextRef) -> LLVMValueRef {
unsafe {
let t = self.get_type().as_llvm(context);
match *self {
ConstValue::I32(val) => LLVMConstInt(t, val as u64, 1),
ConstValue::I16(val) => LLVMConstInt(t, val as u64, 1),
ConstValue::U32(val) => LLVMConstInt(t, val as u64, 0),
}
}
}
}
impl Type {
fn as_llvm(&self, context: LLVMContextRef) -> LLVMTypeRef {
unsafe {
match self {
Type::I32 => LLVMInt32TypeInContext(context),
Type::I16 => LLVMInt16TypeInContext(context),
Type::U32 => LLVMInt32TypeInContext(context),
Type::Bool => LLVMInt1TypeInContext(context),
Type::Void => LLVMVoidType(),
}
}
}
}

View File

@ -1,454 +1,233 @@
use std::ffi::CString;
use std::marker::PhantomData; use std::marker::PhantomData;
use std::net::Incoming;
use std::ptr::null_mut;
use llvm_sys::analysis::LLVMVerifyModule; use builder::{BlockValue, Builder, FunctionValue, InstructionValue, ModuleValue};
use llvm_sys::target::{
LLVM_InitializeAllAsmParsers, LLVM_InitializeAllAsmPrinters, LLVM_InitializeAllTargetInfos,
LLVM_InitializeAllTargetMCs, LLVM_InitializeAllTargets, LLVMSetModuleDataLayout,
};
use llvm_sys::target_machine::{
LLVMCodeGenFileType, LLVMCreateTargetDataLayout, LLVMCreateTargetMachine,
LLVMGetDefaultTargetTriple, LLVMGetTargetFromTriple, LLVMTargetMachineEmitToFile,
};
use llvm_sys::{LLVMBuilder, LLVMContext, LLVMIntPredicate, core::*, prelude::*};
use types::{BasicType, BasicValue, FunctionType, IntegerType, Value};
use util::{ErrorMessageHolder, from_cstring, into_cstring};
pub mod types; pub mod builder;
pub mod compile;
mod util; mod util;
pub enum IntPredicate { // pub struct InstructionValue(BlockValue, usize);
SLT,
SGT,
ULT,
UGT,
}
impl IntPredicate {
pub fn as_llvm(&self) -> LLVMIntPredicate {
match *self {
Self::SLT => LLVMIntPredicate::LLVMIntSLT,
Self::SGT => LLVMIntPredicate::LLVMIntSGT,
Self::ULT => LLVMIntPredicate::LLVMIntULT,
Self::UGT => LLVMIntPredicate::LLVMIntUGT,
}
}
}
#[derive(Debug)]
pub struct Context { pub struct Context {
pub(crate) context_ref: *mut LLVMContext, builder: Builder,
pub(crate) builder_ref: *mut LLVMBuilder,
} }
impl Context { impl Context {
pub fn new() -> Context { pub fn new() -> Context {
unsafe {
// Set up a context, module and builder in that context.
let context = LLVMContextCreate();
let builder = LLVMCreateBuilderInContext(context);
Context { Context {
context_ref: context, builder: Builder::new(),
builder_ref: builder, }
}
pub fn module<'ctx>(&'ctx self, name: &str) -> Module<'ctx> {
let value = self.builder.add_module(ModuleData {
name: name.to_owned(),
});
Module {
phantom: PhantomData,
builder: self.builder.clone(),
value,
} }
} }
} }
pub fn type_i1<'a>(&'a self) -> IntegerType<'a> { #[derive(Debug, Clone, Hash)]
IntegerType::in_context(&self, 1) pub struct ModuleData {
} name: String,
pub fn type_i8<'a>(&'a self) -> IntegerType<'a> {
IntegerType::in_context(&self, 8)
}
pub fn type_i16<'a>(&'a self) -> IntegerType<'a> {
IntegerType::in_context(&self, 16)
}
pub fn type_i32<'a>(&'a self) -> IntegerType<'a> {
IntegerType::in_context(&self, 32)
}
pub fn module(&self, name: &str) -> Module {
Module::with_name(self, name)
}
}
impl Drop for Context {
fn drop(&mut self) {
// Clean up. Values created in the context mostly get cleaned up there.
unsafe {
LLVMDisposeBuilder(self.builder_ref);
LLVMContextDispose(self.context_ref);
}
}
} }
pub struct Module<'ctx> { pub struct Module<'ctx> {
context: &'ctx Context, phantom: PhantomData<&'ctx ()>,
module_ref: LLVMModuleRef, builder: Builder,
name: CString, value: ModuleValue,
} }
impl<'ctx> Module<'ctx> { impl<'ctx> Module<'ctx> {
fn with_name(context: &'ctx Context, name: &str) -> Module<'ctx> { pub fn function(&mut self, name: &str, ret: Type, params: Vec<Type>) -> Function<'ctx> {
unsafe { unsafe {
let cstring_name = into_cstring(name);
let module_ref =
LLVMModuleCreateWithNameInContext(cstring_name.as_ptr(), context.context_ref);
Module {
context,
module_ref,
name: cstring_name,
}
}
}
pub fn add_function(&'ctx self, fn_type: FunctionType<'ctx>, name: &str) -> Function<'ctx> {
unsafe {
let name_cstring = into_cstring(name);
let function_ref =
LLVMAddFunction(self.module_ref, name_cstring.as_ptr(), fn_type.llvm_type());
Function { Function {
module: self, phantom: PhantomData,
fn_type, builder: self.builder.clone(),
name: name_cstring, value: self.builder.add_function(
fn_ref: function_ref, &self.value,
FunctionData {
name: name.to_owned(),
ret,
params,
},
),
} }
} }
} }
pub fn print_to_string(&self) -> Result<String, String> { pub fn value(&self) -> ModuleValue {
unsafe { self.value
LLVM_InitializeAllTargets();
LLVM_InitializeAllTargetInfos();
LLVM_InitializeAllTargetMCs();
LLVM_InitializeAllAsmParsers();
LLVM_InitializeAllAsmPrinters();
let triple = LLVMGetDefaultTargetTriple();
let mut target: _ = null_mut();
let mut err = ErrorMessageHolder::null();
LLVMGetTargetFromTriple(triple, &mut target, err.borrow_mut());
println!("{:?}, {:?}", from_cstring(triple), target);
err.into_result().unwrap();
let target_machine = LLVMCreateTargetMachine(
target,
triple,
c"generic".as_ptr(),
c"".as_ptr(),
llvm_sys::target_machine::LLVMCodeGenOptLevel::LLVMCodeGenLevelNone,
llvm_sys::target_machine::LLVMRelocMode::LLVMRelocDefault,
llvm_sys::target_machine::LLVMCodeModel::LLVMCodeModelDefault,
);
let data_layout = LLVMCreateTargetDataLayout(target_machine);
LLVMSetTarget(self.module_ref, triple);
LLVMSetModuleDataLayout(self.module_ref, data_layout);
let mut err = ErrorMessageHolder::null();
LLVMVerifyModule(
self.module_ref,
llvm_sys::analysis::LLVMVerifierFailureAction::LLVMPrintMessageAction,
err.borrow_mut(),
);
err.into_result().unwrap();
let mut err = ErrorMessageHolder::null();
LLVMTargetMachineEmitToFile(
target_machine,
self.module_ref,
CString::new("hello.asm").unwrap().into_raw(),
LLVMCodeGenFileType::LLVMAssemblyFile,
err.borrow_mut(),
);
err.into_result().unwrap();
let mut err = ErrorMessageHolder::null();
LLVMTargetMachineEmitToFile(
target_machine,
self.module_ref,
CString::new("hello.o").unwrap().into_raw(),
LLVMCodeGenFileType::LLVMObjectFile,
err.borrow_mut(),
);
err.into_result().unwrap();
from_cstring(LLVMPrintModuleToString(self.module_ref)).ok_or("UTF-8 error".to_owned())
} }
} }
#[derive(Debug, Clone, Hash)]
pub struct FunctionData {
name: String,
ret: Type,
params: Vec<Type>,
} }
impl<'a> Drop for Module<'a> {
fn drop(&mut self) {
// Clean up. Values created in the context mostly get cleaned up there.
unsafe {
LLVMDisposeModule(self.module_ref);
}
}
}
#[derive(Clone)]
pub struct Function<'ctx> { pub struct Function<'ctx> {
module: &'ctx Module<'ctx>, phantom: PhantomData<&'ctx ()>,
name: CString, builder: Builder,
fn_type: FunctionType<'ctx>, value: FunctionValue,
fn_ref: LLVMValueRef,
} }
impl<'ctx> Function<'ctx> { impl<'ctx> Function<'ctx> {
pub fn block<T: Into<String>>(&'ctx self, name: T) -> BasicBlock<'ctx> { pub fn block(&self, name: &str) -> Block<'ctx> {
BasicBlock::in_function(&self, name.into())
}
pub fn get_param<T: BasicValue<'ctx>>(
&'ctx self,
nth: usize,
param_type: T::BaseType,
) -> Result<T, String> {
if let Some(actual_type) = self.fn_type.param_types.iter().nth(nth) {
if param_type.llvm_type() != *actual_type {
return Err(String::from("Wrong type"));
}
} else {
return Err(String::from("nth too large"));
}
unsafe { Ok(T::from_llvm(LLVMGetParam(self.fn_ref, nth as u32))) }
}
}
pub struct BasicBlock<'ctx> {
function: &'ctx Function<'ctx>,
builder_ref: LLVMBuilderRef,
name: String,
blockref: LLVMBasicBlockRef,
inserted: bool,
}
impl<'ctx> BasicBlock<'ctx> {
fn in_function(function: &'ctx Function<'ctx>, name: String) -> BasicBlock<'ctx> {
unsafe { unsafe {
let block_name = into_cstring(name.clone()); Block {
let block_ref = LLVMCreateBasicBlockInContext(
function.module.context.context_ref,
block_name.as_ptr(),
);
LLVMAppendExistingBasicBlock(function.fn_ref, block_ref);
BasicBlock {
function: function,
builder_ref: function.module.context.builder_ref,
name,
blockref: block_ref,
inserted: false,
}
}
}
#[must_use]
pub fn integer_compare<T: BasicValue<'ctx>>(
&self,
lhs: &T,
rhs: &T,
comparison: &IntPredicate,
name: &str,
) -> Result<T, ()> {
unsafe {
LLVMPositionBuilderAtEnd(self.builder_ref, self.blockref);
let value = LLVMBuildICmp(
self.builder_ref,
comparison.as_llvm(),
lhs.llvm_value(),
rhs.llvm_value(),
into_cstring(name).as_ptr(),
);
Ok(T::from_llvm(value))
}
}
#[must_use]
pub fn call<T: BasicValue<'ctx>>(
&self,
callee: &Function<'ctx>,
params: Vec<Value<'ctx>>,
name: &str,
) -> Result<T, ()> {
if params.len() != callee.fn_type.param_types.len() {
return Err(()); // TODO invalid amount of parameters
}
for (t1, t2) in callee.fn_type.param_types.iter().zip(&params) {
if t1 != &t2.llvm_type() {
return Err(()); // TODO wrong types in parameters
}
}
if !T::BaseType::is_type(callee.fn_type.return_type) {
return Err(()); // TODO wrong return type
}
unsafe {
let mut param_list: Vec<LLVMValueRef> = params.iter().map(|p| p.llvm_value()).collect();
LLVMPositionBuilderAtEnd(self.builder_ref, self.blockref);
let ret_val = LLVMBuildCall2(
self.builder_ref,
callee.fn_type.llvm_type(),
callee.fn_ref,
param_list.as_mut_ptr(),
param_list.len() as u32,
into_cstring(name).as_ptr(),
);
Ok(T::from_llvm(ret_val))
}
}
#[must_use]
pub fn add<T: BasicValue<'ctx>>(&self, lhs: &T, rhs: &T, name: &str) -> Result<T, ()> {
if lhs.llvm_type() != rhs.llvm_type() {
return Err(()); // TODO error
}
unsafe {
LLVMPositionBuilderAtEnd(self.builder_ref, self.blockref);
let add_value_ref = LLVMBuildAdd(
self.builder_ref,
lhs.llvm_value(),
rhs.llvm_value(),
into_cstring(name).as_ptr(),
);
Ok(T::from_llvm(add_value_ref))
}
}
#[must_use]
pub fn sub<T: BasicValue<'ctx>>(&self, lhs: &T, rhs: &T, name: &str) -> Result<T, ()> {
dbg!(lhs, rhs);
dbg!(lhs.llvm_type(), rhs.llvm_type());
if lhs.llvm_type() != rhs.llvm_type() {
return Err(()); // TODO error
}
unsafe {
LLVMPositionBuilderAtEnd(self.builder_ref, self.blockref);
let add_value_ref = LLVMBuildSub(
self.builder_ref,
lhs.llvm_value(),
rhs.llvm_value(),
into_cstring(name).as_ptr(),
);
Ok(T::from_llvm(add_value_ref))
}
}
#[must_use]
pub fn phi<PhiValue: BasicValue<'ctx>>(
&self,
phi_type: &PhiValue::BaseType,
name: &str,
) -> Result<PhiBuilder<'ctx, PhiValue>, ()> {
unsafe {
LLVMPositionBuilderAtEnd(self.builder_ref, self.blockref);
let phi_node = LLVMBuildPhi(
self.builder_ref,
phi_type.llvm_type(),
into_cstring(name).as_ptr(),
);
Ok(PhiBuilder::new(phi_node))
}
}
#[must_use]
pub fn br(&mut self, into: &BasicBlock<'ctx>) -> Result<(), ()> {
self.try_insert()?;
unsafe {
LLVMPositionBuilderAtEnd(self.builder_ref, self.blockref);
LLVMBuildBr(self.builder_ref, into.blockref);
Ok(())
}
}
#[must_use]
pub fn conditional_br<T: BasicValue<'ctx>>(
&mut self,
condition: &T,
lhs: &BasicBlock<'ctx>,
rhs: &BasicBlock<'ctx>,
) -> Result<(), ()> {
self.try_insert()?;
unsafe {
LLVMPositionBuilderAtEnd(self.builder_ref, self.blockref);
LLVMBuildCondBr(
self.builder_ref,
condition.llvm_value(),
lhs.blockref,
rhs.blockref,
);
Ok(())
}
}
#[must_use]
pub fn ret<T: BasicValue<'ctx>>(&mut self, return_value: &T) -> Result<(), ()> {
if self.function.fn_type.return_type != return_value.llvm_type() {
return Err(());
}
self.try_insert()?;
unsafe {
LLVMPositionBuilderAtEnd(self.builder_ref, self.blockref);
LLVMBuildRet(self.builder_ref, return_value.llvm_value());
Ok(())
}
}
fn try_insert(&mut self) -> Result<(), ()> {
if self.inserted {
return Err(());
}
self.inserted = true;
Ok(())
}
}
impl<'ctx> Drop for BasicBlock<'ctx> {
fn drop(&mut self) {
if !self.inserted {
unsafe {
LLVMDeleteBasicBlock(self.blockref);
}
}
}
}
pub struct PhiBuilder<'ctx, PhiValue: BasicValue<'ctx>> {
phi_node: LLVMValueRef,
phantom: PhantomData<&'ctx PhiValue>,
}
impl<'ctx, PhiValue: BasicValue<'ctx>> PhiBuilder<'ctx, PhiValue> {
fn new(phi_node: LLVMValueRef) -> PhiBuilder<'ctx, PhiValue> {
PhiBuilder {
phi_node,
phantom: PhantomData, phantom: PhantomData,
builder: self.builder.clone(),
value: self.builder.add_block(
&self.value,
BlockData {
name: name.to_owned(),
terminator: None,
},
),
}
} }
} }
pub fn add_incoming(&self, value: &PhiValue, block: &BasicBlock<'ctx>) -> &Self { pub fn value(&self) -> FunctionValue {
let mut values = vec![value.llvm_value()]; self.value
let mut blocks = vec![block.blockref]; }
}
#[derive(Debug, Clone, Hash)]
pub struct BlockData {
name: String,
terminator: Option<TerminatorKind>,
}
pub struct Block<'builder> {
phantom: PhantomData<&'builder ()>,
builder: Builder,
value: BlockValue,
}
impl<'builder> Block<'builder> {
pub fn build(&mut self, instruction: InstructionKind) -> Result<InstructionValue, ()> {
unsafe { unsafe {
LLVMAddIncoming( self.builder
self.phi_node, .add_instruction(&self.value, InstructionData { kind: instruction })
values.as_mut_ptr(),
blocks.as_mut_ptr(),
values.len() as u32,
);
self
} }
} }
pub fn build(&self) -> PhiValue { pub fn terminate(&mut self, instruction: TerminatorKind) -> Result<(), ()> {
unsafe { PhiValue::from_llvm(self.phi_node) } unsafe { self.builder.terminate(&self.value, instruction) }
}
pub fn value(&self) -> BlockValue {
self.value
} }
} }
#[derive(Debug, Clone, Hash)]
pub struct InstructionData {
kind: InstructionKind,
}
#[derive(Debug, Clone, Copy, Hash)]
pub enum IntPredicate {
LessThan,
GreaterThan,
}
#[derive(Debug, Clone, Hash)]
pub enum InstructionKind {
Param(usize),
Constant(ConstValue),
Add(InstructionValue, InstructionValue),
Sub(InstructionValue, InstructionValue),
Phi(Vec<InstructionValue>),
/// Integer Comparison
ICmp(IntPredicate, InstructionValue, InstructionValue),
FunctionCall(FunctionValue, Vec<InstructionValue>),
}
#[derive(Debug, PartialEq, Eq, Clone, Copy, Hash)]
pub enum Type {
I32,
I16,
U32,
Bool,
Void,
}
#[derive(Debug, Clone, Hash)]
pub enum ConstValue {
I32(i32),
I16(i16),
U32(u32),
}
#[derive(Debug, Clone, Hash)]
pub enum TerminatorKind {
Ret(InstructionValue),
Branch(BlockValue),
CondBr(InstructionValue, BlockValue, BlockValue),
}
fn test() {
use ConstValue::*;
use InstructionKind::*;
let context = Context::new();
let mut module = context.module("test");
let mut main = module.function("main", Type::I32, Vec::new());
let mut m_entry = main.block("entry");
let mut fibonacci = module.function("fibonacci", Type::I32, vec![Type::I32]);
let arg = m_entry.build(Constant(I32(5))).unwrap();
m_entry
.build(FunctionCall(fibonacci.value, vec![arg]))
.unwrap();
let mut f_entry = fibonacci.block("entry");
let num_3 = f_entry.build(Constant(I32(3))).unwrap();
let param_n = f_entry.build(Param(0)).unwrap();
let cond = f_entry
.build(ICmp(IntPredicate::LessThan, param_n, num_3))
.unwrap();
let mut then_b = fibonacci.block("then");
let mut else_b = fibonacci.block("else");
f_entry
.terminate(TerminatorKind::CondBr(cond, then_b.value, else_b.value))
.unwrap();
let ret_const = then_b.build(Constant(I32(1))).unwrap();
then_b.terminate(TerminatorKind::Ret(ret_const)).unwrap();
let const_1 = else_b.build(Constant(I32(1))).unwrap();
let const_2 = else_b.build(Constant(I32(2))).unwrap();
let param_1 = else_b.build(Sub(param_n, const_1)).unwrap();
let param_2 = else_b.build(Sub(param_n, const_2)).unwrap();
let call_1 = else_b
.build(FunctionCall(fibonacci.value, vec![param_1]))
.unwrap();
let call_2 = else_b
.build(FunctionCall(fibonacci.value, vec![param_2]))
.unwrap();
let add = else_b.build(Add(call_1, call_2)).unwrap();
else_b.terminate(TerminatorKind::Ret(add)).unwrap();
dbg!(context);
}

View File

@ -1,336 +0,0 @@
use std::{any::Any, marker::PhantomData, ptr::null_mut};
use llvm_sys::{
LLVMTypeKind,
core::*,
prelude::{LLVMTypeRef, LLVMValueRef},
};
use crate::{BasicBlock, Context, PhiBuilder};
pub trait BasicType<'ctx> {
fn llvm_type(&self) -> LLVMTypeRef;
fn is_type(llvm_type: LLVMTypeRef) -> bool
where
Self: Sized;
unsafe fn from_llvm(context: &'ctx Context, llvm_type: LLVMTypeRef) -> Self
where
Self: Sized;
fn function_type(&self, params: Vec<TypeEnum>) -> FunctionType<'ctx> {
unsafe {
let mut typerefs: Vec<LLVMTypeRef> = params.iter().map(|b| b.llvm_type()).collect();
let param_ptr = typerefs.as_mut_ptr();
let param_len = typerefs.len();
FunctionType {
phantom: PhantomData,
return_type: self.llvm_type(),
param_types: typerefs,
type_ref: LLVMFunctionType(self.llvm_type(), param_ptr, param_len as u32, 0),
}
}
}
fn array_type(&'ctx self, length: u32) -> ArrayType<'ctx>
where
Self: Sized,
{
ArrayType {
phantom: PhantomData,
element_type: self.llvm_type(),
length,
type_ref: unsafe { LLVMArrayType(self.llvm_type(), length) },
}
}
}
impl<'ctx> PartialEq for &dyn BasicType<'ctx> {
fn eq(&self, other: &Self) -> bool {
self.llvm_type() == other.llvm_type()
}
}
impl<'ctx> PartialEq<LLVMTypeRef> for &dyn BasicType<'ctx> {
fn eq(&self, other: &LLVMTypeRef) -> bool {
self.llvm_type() == *other
}
}
#[derive(Clone, Copy)]
pub struct IntegerType<'ctx> {
context: &'ctx Context,
type_ref: LLVMTypeRef,
}
impl<'ctx> BasicType<'ctx> for IntegerType<'ctx> {
fn llvm_type(&self) -> LLVMTypeRef {
self.type_ref
}
unsafe fn from_llvm(context: &'ctx Context, llvm_type: LLVMTypeRef) -> Self
where
Self: Sized,
{
IntegerType {
context,
type_ref: llvm_type,
}
}
fn is_type(llvm_type: LLVMTypeRef) -> bool {
unsafe { LLVMGetTypeKind(llvm_type) == LLVMTypeKind::LLVMIntegerTypeKind }
}
}
impl<'ctx> IntegerType<'ctx> {
pub(crate) fn in_context(context: &Context, width: u32) -> IntegerType {
let type_ref = unsafe {
match width {
128 => LLVMInt128TypeInContext(context.context_ref),
64 => LLVMInt64TypeInContext(context.context_ref),
32 => LLVMInt32TypeInContext(context.context_ref),
16 => LLVMInt16TypeInContext(context.context_ref),
8 => LLVMInt8TypeInContext(context.context_ref),
1 => LLVMInt1TypeInContext(context.context_ref),
_ => LLVMIntTypeInContext(context.context_ref, width),
}
};
IntegerType { context, type_ref }
}
pub fn from_signed(&self, value: i64) -> IntegerValue<'ctx> {
self.from_const(value as u64, true)
}
pub fn from_unsigned(&self, value: i64) -> IntegerValue<'ctx> {
self.from_const(value as u64, false)
}
fn from_const(&self, value: u64, sign: bool) -> IntegerValue<'ctx> {
unsafe {
IntegerValue::from_llvm(LLVMConstInt(
self.type_ref,
value,
match sign {
true => 1,
false => 0,
},
))
}
}
}
#[derive(Clone)]
pub struct FunctionType<'ctx> {
phantom: PhantomData<&'ctx ()>,
pub(crate) return_type: LLVMTypeRef,
pub(crate) param_types: Vec<LLVMTypeRef>,
type_ref: LLVMTypeRef,
}
impl<'ctx> BasicType<'ctx> for FunctionType<'ctx> {
fn llvm_type(&self) -> LLVMTypeRef {
self.type_ref
}
unsafe fn from_llvm(_context: &'ctx Context, fn_type: LLVMTypeRef) -> Self
where
Self: Sized,
{
unsafe {
let param_count = LLVMCountParamTypes(fn_type);
let param_types_ptr: *mut LLVMTypeRef = null_mut();
LLVMGetParamTypes(fn_type, param_types_ptr);
let param_types: Vec<LLVMTypeRef> =
std::slice::from_raw_parts(param_types_ptr, param_count as usize)
.iter()
.map(|t| *t)
.collect();
FunctionType {
phantom: PhantomData,
return_type: LLVMGetReturnType(fn_type),
param_types,
type_ref: fn_type,
}
}
}
fn is_type(llvm_type: LLVMTypeRef) -> bool {
unsafe { LLVMGetTypeKind(llvm_type) == LLVMTypeKind::LLVMFunctionTypeKind }
}
}
#[derive(Clone, Copy)]
pub struct ArrayType<'ctx> {
phantom: PhantomData<&'ctx ()>,
element_type: LLVMTypeRef,
length: u32,
type_ref: LLVMTypeRef,
}
impl<'ctx> BasicType<'ctx> for ArrayType<'ctx> {
fn llvm_type(&self) -> LLVMTypeRef {
self.type_ref
}
unsafe fn from_llvm(context: &'ctx Context, llvm_type: LLVMTypeRef) -> Self
where
Self: Sized,
{
unsafe {
let length = LLVMGetArrayLength(llvm_type);
todo!()
}
}
fn is_type(llvm_type: LLVMTypeRef) -> bool {
unsafe { LLVMGetTypeKind(llvm_type) == LLVMTypeKind::LLVMArrayTypeKind }
}
}
#[derive(Clone)]
pub enum TypeEnum<'ctx> {
Integer(IntegerType<'ctx>),
Array(ArrayType<'ctx>),
Function(FunctionType<'ctx>),
}
impl<'ctx> From<IntegerType<'ctx>> for TypeEnum<'ctx> {
fn from(int: IntegerType<'ctx>) -> Self {
TypeEnum::Integer(int)
}
}
impl<'ctx> From<ArrayType<'ctx>> for TypeEnum<'ctx> {
fn from(arr: ArrayType<'ctx>) -> Self {
TypeEnum::Array(arr)
}
}
impl<'ctx> From<FunctionType<'ctx>> for TypeEnum<'ctx> {
fn from(func: FunctionType<'ctx>) -> Self {
TypeEnum::Function(func)
}
}
impl<'ctx> TypeEnum<'ctx> {
fn inner_basic(&'ctx self) -> &'ctx dyn BasicType<'ctx> {
match self {
TypeEnum::Integer(integer_type) => integer_type,
TypeEnum::Array(array_type) => array_type,
TypeEnum::Function(function_type) => function_type,
}
}
}
impl<'ctx> BasicType<'ctx> for TypeEnum<'ctx> {
fn llvm_type(&self) -> LLVMTypeRef {
self.inner_basic().llvm_type()
}
fn is_type(llvm_type: LLVMTypeRef) -> bool
where
Self: Sized,
{
true
}
unsafe fn from_llvm(context: &'ctx Context, llvm_type: LLVMTypeRef) -> Self
where
Self: Sized,
{
unsafe {
match LLVMGetTypeKind(llvm_type) {
LLVMTypeKind::LLVMIntegerTypeKind => {
TypeEnum::Integer(IntegerType::from_llvm(context, llvm_type))
}
LLVMTypeKind::LLVMArrayTypeKind => {
TypeEnum::Array(ArrayType::from_llvm(context, llvm_type))
}
LLVMTypeKind::LLVMFunctionTypeKind => {
TypeEnum::Function(FunctionType::from_llvm(context, llvm_type))
}
_ => todo!(),
}
}
}
}
pub trait BasicValue<'ctx>: std::fmt::Debug {
type BaseType: BasicType<'ctx>;
unsafe fn from_llvm(value: LLVMValueRef) -> Self
where
Self: Sized;
fn llvm_value(&self) -> LLVMValueRef;
fn llvm_type(&self) -> LLVMTypeRef;
}
#[derive(Clone, Debug)]
pub struct IntegerValue<'ctx> {
phantom: PhantomData<&'ctx ()>,
pub(crate) value_ref: LLVMValueRef,
}
impl<'ctx> BasicValue<'ctx> for IntegerValue<'ctx> {
type BaseType = IntegerType<'ctx>;
unsafe fn from_llvm(value: LLVMValueRef) -> Self {
IntegerValue {
phantom: PhantomData,
value_ref: value,
}
}
fn llvm_value(&self) -> LLVMValueRef {
self.value_ref
}
fn llvm_type(&self) -> LLVMTypeRef {
unsafe { LLVMTypeOf(self.value_ref) }
}
}
#[derive(Clone, Debug)]
pub enum Value<'ctx> {
Integer(IntegerValue<'ctx>),
}
impl<'ctx> BasicValue<'ctx> for Value<'ctx> {
type BaseType = TypeEnum<'ctx>;
unsafe fn from_llvm(value: LLVMValueRef) -> Self
where
Self: Sized,
{
unsafe {
use LLVMTypeKind::*;
let llvm_type = LLVMTypeOf(value);
let type_kind = LLVMGetTypeKind(llvm_type);
match type_kind {
LLVMIntegerTypeKind => Value::Integer(IntegerValue::from_llvm(value)),
_ => panic!("asd"),
}
}
}
fn llvm_value(&self) -> LLVMValueRef {
match self {
Self::Integer(i) => i.llvm_value(),
}
}
fn llvm_type(&self) -> LLVMTypeRef {
match self {
Self::Integer(i) => i.llvm_type(),
}
}
}
impl<'ctx> From<IntegerValue<'ctx>> for Value<'ctx> {
fn from(value: IntegerValue<'ctx>) -> Self {
Value::Integer(value)
}
}

View File

@ -5,6 +5,11 @@ use std::{
use llvm_sys::error::LLVMDisposeErrorMessage; use llvm_sys::error::LLVMDisposeErrorMessage;
use crate::{
Type,
builder::{Builder, InstructionValue},
};
pub fn into_cstring<T: Into<String>>(value: T) -> CString { pub fn into_cstring<T: Into<String>>(value: T) -> CString {
let string = value.into(); let string = value.into();
unsafe { CString::from_vec_with_nul_unchecked((string + "\0").into_bytes()) } unsafe { CString::from_vec_with_nul_unchecked((string + "\0").into_bytes()) }
@ -49,3 +54,17 @@ impl Drop for ErrorMessageHolder {
} }
} }
} }
pub fn match_types(
lhs: &InstructionValue,
rhs: &InstructionValue,
builder: &Builder,
) -> Result<Type, ()> {
let lhs_type = lhs.get_type(&builder);
let rhs_type = rhs.get_type(&builder);
if let (Ok(lhs_t), Ok(rhs_t)) = (lhs_type, rhs_type) {
if lhs_t == rhs_t { Ok(lhs_t) } else { Err(()) }
} else {
Err(())
}
}

View File

@ -1,6 +1,6 @@
// Main // Main
fn main() { fn main() {
return fibonacci(10); return fibonacci(3);
} }
// Fibonacci // Fibonacci

View File

@ -164,8 +164,9 @@ fn main() {
println!("test3"); println!("test3");
match codegen_module.module.print_to_string() { codegen_module.context.compile();
Ok(v) => println!("{}", v), // match codegen_module.module.print_to_string() {
Err(e) => println!("Err: {:?}", e), // Ok(v) => println!("{}", v),
} // Err(e) => println!("Err: {:?}", e),
// }
} }

View File

@ -1,7 +1,7 @@
use crate::ast::*; use crate::ast::*;
use crate::{ use crate::{
lexer::Token, lexer::Token,
token_stream::{Error, TokenRange, TokenStream}, token_stream::{Error, TokenStream},
}; };
pub trait Parse pub trait Parse
@ -28,31 +28,32 @@ impl Parse for Type {
impl Parse for Expression { impl Parse for Expression {
fn parse(mut stream: TokenStream) -> Result<Expression, Error> { fn parse(mut stream: TokenStream) -> Result<Expression, Error> {
let lhs = parse_primary_expression(&mut stream)?; let lhs = stream.parse::<PrimaryExpression>()?.0;
parse_binop_rhs(&mut stream, lhs, None) parse_binop_rhs(&mut stream, lhs, None)
} }
} }
fn parse_primary_expression(stream: &mut TokenStream) -> Result<Expression, Error> { #[derive(Debug)]
pub struct PrimaryExpression(Expression);
impl Parse for PrimaryExpression {
fn parse(mut stream: TokenStream) -> Result<Self, Error> {
use ExpressionKind as Kind; use ExpressionKind as Kind;
if let Ok(exp) = stream.parse() { let expr = if let Ok(exp) = stream.parse() {
Ok(Expression( Expression(
Kind::FunctionCall(Box::new(exp)), Kind::FunctionCall(Box::new(exp)),
stream.get_range().unwrap(), stream.get_range().unwrap(),
)) )
} else if let Ok(block) = stream.parse() { } else if let Ok(block) = stream.parse() {
Ok(Expression( Expression(
Kind::BlockExpr(Box::new(block)), Kind::BlockExpr(Box::new(block)),
stream.get_range().unwrap(), stream.get_range().unwrap(),
)) )
} else if let Ok(ifexpr) = stream.parse() { } else if let Ok(ifexpr) = stream.parse() {
Ok(Expression( Expression(Kind::IfExpr(Box::new(ifexpr)), stream.get_range().unwrap())
Kind::IfExpr(Box::new(ifexpr)),
stream.get_range().unwrap(),
))
} else if let Some(token) = stream.next() { } else if let Some(token) = stream.next() {
Ok(match &token { match &token {
Token::Identifier(v) => { Token::Identifier(v) => {
Expression(Kind::VariableName(v.clone()), stream.get_range().unwrap()) Expression(Kind::VariableName(v.clone()), stream.get_range().unwrap())
} }
@ -66,9 +67,11 @@ fn parse_primary_expression(stream: &mut TokenStream) -> Result<Expression, Erro
exp exp
} }
_ => Err(stream.expected_err("identifier, constant or parentheses")?)?, _ => Err(stream.expected_err("identifier, constant or parentheses")?)?,
}) }
} else { } else {
Err(stream.expected_err("expression")?)? Err(stream.expected_err("expression")?)?
};
Ok(PrimaryExpression(expr))
} }
} }
@ -95,7 +98,7 @@ fn parse_binop_rhs(
stream.parse_if::<BinaryOperator, _>(|b| b.get_precedence() >= expr_precedence) stream.parse_if::<BinaryOperator, _>(|b| b.get_precedence() >= expr_precedence)
{ {
let curr_token_prec = op.get_precedence(); let curr_token_prec = op.get_precedence();
let mut rhs = parse_primary_expression(stream)?; let mut rhs = stream.parse::<PrimaryExpression>()?.0;
if let Ok(next_op) = stream.parse_peek::<BinaryOperator>() { if let Ok(next_op) = stream.parse_peek::<BinaryOperator>() {
let next_prec = next_op.get_precedence(); let next_prec = next_op.get_precedence();

View File

@ -1,95 +1,52 @@
use std::collections::HashMap; use std::collections::HashMap;
use crate::{ use crate::{
ast, ast::{self, TypeKind},
mir::{self, StmtKind, VariableReference}, mir::{self, StmtKind, VariableReference},
token_stream::TokenRange,
}; };
#[derive(Clone)] #[derive(Clone)]
pub enum InferredType { pub enum InferredType {
FromVariable(String, TokenRange), FromVariable(String),
FunctionReturn(String, TokenRange), FunctionReturn(String),
Static(mir::TypeKind, TokenRange), Static(mir::TypeKind),
OneOf(Vec<InferredType>), OneOf(Vec<InferredType>),
Void(TokenRange), Void,
DownstreamError(IntoMIRError, TokenRange),
}
fn all_ok<T, E>(result: Vec<Result<T, E>>) -> Option<Vec<T>> {
let mut res = Vec::with_capacity(result.len());
for item in result {
if let Ok(item) = item {
res.push(item);
} else {
return None;
}
}
Some(res)
} }
impl InferredType { impl InferredType {
fn collapse( fn collapse(&self, scope: &VirtualScope) -> mir::TypeKind {
&self,
state: &mut State,
scope: &VirtualScope,
) -> Result<mir::TypeKind, IntoMIRError> {
match self { match self {
InferredType::FromVariable(name, token_range) => { InferredType::FromVariable(name) => {
if let Some(inferred) = scope.get_var(name) { if let Some(inferred) = scope.get_var(name) {
let temp = inferred.collapse(state, scope); inferred.collapse(scope)
state.note(temp)
} else { } else {
state.err(IntoMIRError::VariableNotDefined(name.clone(), *token_range)) mir::TypeKind::Vague(mir::VagueType::Unknown)
} }
} }
InferredType::FunctionReturn(name, token_range) => { InferredType::FunctionReturn(name) => {
if let Some(type_kind) = scope.get_return_type(name) { if let Some(type_kind) = scope.get_return_type(name) {
Ok(*type_kind) type_kind.clone()
} else { } else {
state.err(IntoMIRError::VariableNotDefined(name.clone(), *token_range)) mir::TypeKind::Vague(mir::VagueType::Unknown)
} }
} }
InferredType::Static(type_kind, _) => Ok(*type_kind), InferredType::Static(type_kind) => type_kind.clone(),
InferredType::OneOf(inferred_types) => { InferredType::OneOf(inferred_types) => {
let collapsed = all_ok( let list: Vec<mir::TypeKind> =
inferred_types inferred_types.iter().map(|t| t.collapse(scope)).collect();
.iter()
.map(|t| {
let temp = t.collapse(state, scope);
state.note(temp)
})
.collect(),
);
if let Some(list) = collapsed {
if let Some(first) = list.first() { if let Some(first) = list.first() {
if list.iter().all(|i| i == first) { if list.iter().all(|i| i == first) {
Ok((*first).into()) first.clone().into()
} else { } else {
state.err(IntoMIRError::ConflictingType(self.get_range())) // IntoMIRError::ConflictingType(self.get_range())
mir::TypeKind::Void
} }
} else { } else {
state.err(IntoMIRError::VoidType(self.get_range())) mir::TypeKind::Void
}
} else {
state.err(IntoMIRError::DownstreamError(self.get_range()))
} }
} }
InferredType::Void(token_range) => state.err(IntoMIRError::VoidType(*token_range)), InferredType::Void => mir::TypeKind::Void,
InferredType::DownstreamError(e, _) => state.err(e.clone()),
}
}
fn get_range(&self) -> TokenRange {
match &self {
InferredType::FromVariable(_, token_range) => *token_range,
InferredType::FunctionReturn(_, token_range) => *token_range,
InferredType::Static(_, token_range) => *token_range,
InferredType::OneOf(inferred_types) => {
inferred_types.iter().map(|i| i.get_range()).sum()
}
InferredType::Void(token_range) => *token_range,
InferredType::DownstreamError(_, range) => *range,
} }
} }
} }
@ -97,18 +54,12 @@ impl InferredType {
pub struct VirtualVariable { pub struct VirtualVariable {
name: String, name: String,
inferred: InferredType, inferred: InferredType,
meta: mir::Metadata,
} }
pub struct VirtualFunctionSignature { pub struct VirtualFunctionSignature {
name: String, name: String,
return_type: mir::TypeKind, return_type: mir::TypeKind,
parameter_types: Vec<mir::TypeKind>, parameter_types: Vec<mir::TypeKind>,
metadata: mir::Metadata,
}
pub enum VirtualStorageError {
KeyAlreadyExists(String),
} }
pub struct VirtualStorage<T> { pub struct VirtualStorage<T> {
@ -116,24 +67,16 @@ pub struct VirtualStorage<T> {
} }
impl<T> VirtualStorage<T> { impl<T> VirtualStorage<T> {
fn set(&mut self, name: String, value: T) -> Result<(), VirtualStorageError> { fn set(&mut self, name: String, value: T) {
let result = if let Some(list) = self.storage.get_mut(&name) { if let Some(list) = self.storage.get_mut(&name) {
list.push(value); list.push(value);
Err(VirtualStorageError::KeyAlreadyExists(name.clone()))
} else { } else {
self.storage.insert(name, vec![value]); self.storage.insert(name, vec![value]);
Ok(())
}; };
result
} }
fn get(&self, name: &String) -> Option<&T> { fn get(&self, name: &String) -> Option<&Vec<T>> {
if let Some(list) = self.storage.get(name) { self.storage.get(name)
list.first()
} else {
None
}
} }
} }
@ -145,49 +88,44 @@ impl<T> Default for VirtualStorage<T> {
} }
} }
#[derive(Clone, Debug)]
pub enum IntoMIRError {
DuplicateVariable(String, TokenRange),
DuplicateFunction(String, TokenRange),
VariableNotDefined(String, TokenRange),
FunctionNotDefined(String, TokenRange),
DownstreamError(TokenRange),
ConflictingType(TokenRange),
VoidType(TokenRange),
}
pub struct VirtualScope { pub struct VirtualScope {
variables: VirtualStorage<VirtualVariable>, variables: VirtualStorage<VirtualVariable>,
functions: VirtualStorage<VirtualFunctionSignature>, functions: VirtualStorage<VirtualFunctionSignature>,
} }
impl VirtualScope { impl VirtualScope {
pub fn set_var(&mut self, variable: VirtualVariable) -> Result<(), IntoMIRError> { pub fn set_var(&mut self, variable: VirtualVariable) {
let range = variable.meta.range; self.variables.set(variable.name.clone(), variable);
match self.variables.set(variable.name.clone(), variable) {
Ok(_) => Ok(()),
Err(VirtualStorageError::KeyAlreadyExists(n)) => {
Err(IntoMIRError::DuplicateVariable(n, range))
}
}
} }
pub fn set_fun(&mut self, function: VirtualFunctionSignature) -> Result<(), IntoMIRError> { pub fn set_fun(&mut self, function: VirtualFunctionSignature) {
let range = function.metadata.range; self.functions.set(function.name.clone(), function)
match self.functions.set(function.name.clone(), function) {
Ok(_) => Ok(()),
Err(VirtualStorageError::KeyAlreadyExists(n)) => {
Err(IntoMIRError::DuplicateVariable(n, range))
}
}
} }
pub fn get_var(&self, name: &String) -> Option<&InferredType> { pub fn get_var(&self, name: &String) -> Option<InferredType> {
self.variables.get(name).map(|v| &v.inferred) self.variables.get(name).and_then(|v| {
if v.len() > 1 {
Some(InferredType::OneOf(
v.iter().map(|v| v.inferred.clone()).collect(),
))
} else if let Some(v) = v.first() {
Some(v.inferred.clone())
} else {
None
}
})
} }
pub fn get_return_type(&self, name: &String) -> Option<&mir::TypeKind> { pub fn get_return_type(&self, name: &String) -> Option<mir::TypeKind> {
self.functions.get(name).map(|v| &v.return_type) self.functions.get(name).and_then(|v| {
if v.len() > 1 {
Some(mir::TypeKind::Vague(mir::VagueType::Unknown))
} else if let Some(v) = v.first() {
Some(v.return_type.clone())
} else {
None
}
})
} }
} }
@ -200,53 +138,18 @@ impl Default for VirtualScope {
} }
} }
#[derive(Debug)]
pub struct State {
errors: Vec<IntoMIRError>,
fatal: bool,
}
impl State {
fn note<T: std::fmt::Debug>(
&mut self,
value: Result<T, IntoMIRError>,
) -> Result<T, IntoMIRError> {
dbg!(&value);
if let Err(e) = &value {
self.errors.push(e.clone());
}
value
}
fn err<T>(&mut self, error: IntoMIRError) -> Result<T, IntoMIRError> {
self.errors.push(error.clone());
Err(error)
}
}
impl Default for State {
fn default() -> Self {
Self {
errors: Default::default(),
fatal: false,
}
}
}
impl ast::Module { impl ast::Module {
pub fn process(&self) -> mir::Module { pub fn process(&self) -> mir::Module {
let mut state = State::default();
let mut scope = VirtualScope::default(); let mut scope = VirtualScope::default();
for stmt in &self.top_level_statements { for stmt in &self.top_level_statements {
match stmt { match stmt {
FunctionDefinition(ast::FunctionDefinition(signature, _, range)) => { FunctionDefinition(ast::FunctionDefinition(signature, _, _)) => {
state.note(scope.set_fun(VirtualFunctionSignature { scope.set_fun(VirtualFunctionSignature {
name: signature.name.clone(), name: signature.name.clone(),
return_type: signature.return_type.into(), return_type: signature.return_type.into(),
parameter_types: signature.args.iter().map(|p| p.1.into()).collect(), parameter_types: signature.args.iter().map(|p| p.1.into()).collect(),
metadata: (*range).into(), });
}));
} }
_ => {} _ => {}
} }
@ -265,33 +168,33 @@ impl ast::Module {
} }
FunctionDefinition(ast::FunctionDefinition(signature, block, range)) => { FunctionDefinition(ast::FunctionDefinition(signature, block, range)) => {
for (name, ptype) in &signature.args { for (name, ptype) in &signature.args {
state.note(scope.set_var(VirtualVariable { scope.set_var(VirtualVariable {
name: name.clone(), name: name.clone(),
inferred: InferredType::Static((*ptype).into(), *range), inferred: InferredType::Static((*ptype).into()),
meta: ptype.1.into(), });
}));
} }
dbg!(&signature);
if let Some(mir_block) = block.process(&mut state, &mut scope) {
let def = mir::FunctionDefinition { let def = mir::FunctionDefinition {
name: signature.name.clone(), name: signature.name.clone(),
return_type: signature
.return_type
.map(|r| r.0.into())
.unwrap_or(mir::TypeKind::Void),
parameters: signature parameters: signature
.args .args
.iter() .iter()
.cloned() .cloned()
.map(|p| (p.0, p.1.into())) .map(|p| (p.0, p.1.into()))
.collect(), .collect(),
kind: mir::FunctionDefinitionKind::Local(mir_block, (*range).into()), kind: mir::FunctionDefinitionKind::Local(
block.into_mir(&mut scope),
(*range).into(),
),
}; };
functions.push(def); functions.push(def);
} }
} }
} }
}
dbg!(&state);
// TODO do something with state here // TODO do something with state here
@ -304,79 +207,57 @@ impl ast::Module {
} }
impl ast::Block { impl ast::Block {
pub fn process(&self, state: &mut State, scope: &mut VirtualScope) -> Option<mir::Block> { pub fn into_mir(&self, scope: &mut VirtualScope) -> mir::Block {
let mut mir_statements = Vec::new(); let mut mir_statements = Vec::new();
for statement in &self.0 { for statement in &self.0 {
let (kind, range): (Option<mir::StmtKind>, TokenRange) = match statement { let (kind, range) = match statement {
ast::BlockLevelStatement::Let(s_let) => { ast::BlockLevelStatement::Let(s_let) => {
let res = s_let.1.infer_return_type().collapse(state, scope); let t = s_let.1.infer_return_type().collapse(scope);
let collapsed = state.note(res); let inferred = InferredType::Static(t.clone());
let inferred = match &collapsed { scope.set_var(VirtualVariable {
Ok(t) => InferredType::Static(*t, s_let.2),
Err(e) => InferredType::DownstreamError(e.clone(), s_let.2),
};
state
.note(scope.set_var(VirtualVariable {
name: s_let.0.clone(), name: s_let.0.clone(),
inferred, inferred,
meta: s_let.2.into(), });
}))
.ok();
( (
collapsed.ok().and_then(|t| {
s_let.1.process(state, scope).map(|e| {
mir::StmtKind::Let( mir::StmtKind::Let(
mir::VariableReference(t, s_let.0.clone(), s_let.2.into()), mir::VariableReference(t, s_let.0.clone(), s_let.2.into()),
e, s_let.1.process(scope),
) ),
})
}),
s_let.2, s_let.2,
) )
} }
ast::BlockLevelStatement::Import(_) => todo!(), ast::BlockLevelStatement::Import(_) => todo!(),
ast::BlockLevelStatement::Expression(e) => ( ast::BlockLevelStatement::Expression(e) => {
e.process(state, scope).map(|e| StmtKind::Expression(e)), (StmtKind::Expression(e.process(scope)), e.1)
e.1, }
), ast::BlockLevelStatement::Return(_, e) => {
ast::BlockLevelStatement::Return(_, e) => ( (StmtKind::Expression(e.process(scope)), e.1)
e.process(state, scope).map(|e| StmtKind::Expression(e)), }
e.1,
),
}; };
if let Some(kind) = kind {
mir_statements.push(mir::Statement(kind, range.into())); mir_statements.push(mir::Statement(kind, range.into()));
} else {
state.fatal = true;
}
} }
let return_expression = if let Some(r) = &self.1 { let return_expression = if let Some(r) = &self.1 {
if let Some(expr) = r.1.process(state, scope) { Some((r.0.into(), Box::new(r.1.process(scope))))
Some((r.0.into(), Box::new(expr)))
} else {
state.fatal = true;
None?
}
} else { } else {
None None
}; };
Some(mir::Block { mir::Block {
statements: mir_statements, statements: mir_statements,
return_expression, return_expression,
meta: self.2.into(), meta: self.2.into(),
}) }
} }
fn infer_return_type(&self) -> InferredType { fn infer_return_type(&self) -> InferredType {
self.1 self.1
.as_ref() .as_ref()
.map(|(_, expr)| expr.infer_return_type()) .map(|(_, expr)| expr.infer_return_type())
.unwrap_or(InferredType::Void(self.2)) .unwrap_or(InferredType::Void)
} }
} }
@ -390,102 +271,59 @@ impl From<ast::ReturnType> for mir::ReturnKind {
} }
impl ast::Expression { impl ast::Expression {
fn process(&self, state: &mut State, scope: &mut VirtualScope) -> Option<mir::Expression> { fn process(&self, scope: &mut VirtualScope) -> mir::Expression {
let kind = match &self.0 { let kind = match &self.0 {
ast::ExpressionKind::VariableName(name) => { ast::ExpressionKind::VariableName(name) => mir::ExprKind::Variable(VariableReference(
let ty = scope.get_var(name); if let Some(ty) = scope.get_var(name) {
if let Some(ty) = ty { ty.collapse(scope)
let res = ty.collapse(state, scope);
state
.note(res)
.map(|result| {
mir::ExprKind::Variable(VariableReference(
result,
name.clone(),
self.1.into(),
))
})
.ok()
} else { } else {
state mir::TypeKind::Vague(mir::VagueType::Unknown)
.err(IntoMIRError::VariableNotDefined( },
name.clone(), name.clone(),
self.1.into(), self.1.into(),
)) )),
.ok() ast::ExpressionKind::Literal(literal) => mir::ExprKind::Literal(literal.mir()),
} ast::ExpressionKind::Binop(binary_operator, lhs, rhs) => mir::ExprKind::BinOp(
}
ast::ExpressionKind::Literal(literal) => Some(mir::ExprKind::Literal(literal.mir())),
ast::ExpressionKind::Binop(binary_operator, lhs, rhs) => {
let mir_lhs = lhs.process(state, scope);
let mir_rhs = rhs.process(state, scope);
Some(mir::ExprKind::BinOp(
binary_operator.mir(), binary_operator.mir(),
Box::new(mir_lhs?), Box::new(lhs.process(scope)),
Box::new(mir_rhs?), Box::new(rhs.process(scope)),
)) ),
}
ast::ExpressionKind::FunctionCall(fn_call_expr) => { ast::ExpressionKind::FunctionCall(fn_call_expr) => {
if let Some(fn_type) = scope.get_return_type(&fn_call_expr.0).cloned() { mir::ExprKind::FunctionCall(mir::FunctionCall {
let parameters = all_ok(
fn_call_expr
.1
.iter()
.map(|e| {
e.process(state, scope)
.ok_or(IntoMIRError::DownstreamError(self.1.into()))
})
.collect(),
);
if let Some(parameters) = parameters {
Some(mir::ExprKind::FunctionCall(mir::FunctionCall {
name: fn_call_expr.0.clone(), name: fn_call_expr.0.clone(),
return_type: fn_type, return_type: if let Some(r_type) = scope.get_return_type(&fn_call_expr.0) {
parameters, r_type
}))
} else { } else {
None mir::TypeKind::Vague(mir::VagueType::Unknown)
} },
} else { parameters: fn_call_expr.1.iter().map(|e| e.process(scope)).collect(),
state })
.err(IntoMIRError::FunctionNotDefined(
fn_call_expr.0.clone(),
self.1,
))
.ok()
}
}
ast::ExpressionKind::BlockExpr(block) => {
block.process(state, scope).map(|b| mir::ExprKind::Block(b))
} }
ast::ExpressionKind::BlockExpr(block) => mir::ExprKind::Block(block.into_mir(scope)),
ast::ExpressionKind::IfExpr(if_expression) => { ast::ExpressionKind::IfExpr(if_expression) => {
let cond = if_expression.0.process(state, scope); let cond = if_expression.0.process(scope);
let then_block = if_expression.1.process(state, scope); let then_block = if_expression.1.into_mir(scope);
let else_block = if let Some(el) = &if_expression.2 { let else_block = if let Some(el) = &if_expression.2 {
Some(el.process(state, scope)?) Some(el.into_mir(scope))
} else { } else {
None None
}; };
Some(mir::ExprKind::If(mir::IfExpression( mir::ExprKind::If(mir::IfExpression(Box::new(cond), then_block, else_block))
Box::new(cond?),
then_block?,
else_block,
)))
} }
}; };
kind.map(|k| mir::Expression(k, self.1.into())) mir::Expression(kind, self.1.into())
} }
fn infer_return_type(&self) -> InferredType { fn infer_return_type(&self) -> InferredType {
use ast::ExpressionKind::*; use ast::ExpressionKind::*;
match &self.0 { match &self.0 {
VariableName(name) => InferredType::FromVariable(name.clone(), self.1), VariableName(name) => InferredType::FromVariable(name.clone()),
Literal(lit) => InferredType::Static(lit.mir().as_type(), self.1), Literal(lit) => InferredType::Static(lit.mir().as_type()),
Binop(_, lhs, rhs) => { Binop(_, lhs, rhs) => {
InferredType::OneOf(vec![lhs.infer_return_type(), rhs.infer_return_type()]) InferredType::OneOf(vec![lhs.infer_return_type(), rhs.infer_return_type()])
} }
FunctionCall(fncall) => InferredType::FunctionReturn(fncall.0.clone(), self.1), FunctionCall(fncall) => InferredType::FunctionReturn(fncall.0.clone()),
BlockExpr(block) => block.infer_return_type(), BlockExpr(block) => block.infer_return_type(),
IfExpr(exp) => { IfExpr(exp) => {
let mut types = vec![exp.1.infer_return_type()]; let mut types = vec![exp.1.infer_return_type()];

View File

@ -1,49 +1,49 @@
use std::{collections::HashMap, mem, ops::Deref}; use std::{collections::HashMap, mem, ops::Deref};
use crate::mir::{self, types::ReturnType, TypeKind, VariableReference};
use reid_lib::{ use reid_lib::{
types::{BasicType, BasicValue, IntegerValue, TypeEnum, Value}, builder::{FunctionValue, InstructionValue},
BasicBlock, Context, Function, IntPredicate, Module, Block, ConstValue, Context, Function, InstructionKind, IntPredicate, Module, TerminatorKind,
Type,
}; };
use crate::mir::{self, types::ReturnType, TypeKind, VariableReference};
pub struct ModuleCodegen<'ctx> { pub struct ModuleCodegen<'ctx> {
context: &'ctx Context, pub context: &'ctx Context,
pub module: Module<'ctx>, pub module: Module<'ctx>,
} }
impl mir::Module { impl mir::Module {
pub fn codegen<'ctx>(&self, context: &'ctx Context) -> ModuleCodegen<'ctx> { pub fn codegen<'ctx>(&self, context: &'ctx Context) -> ModuleCodegen<'ctx> {
let module = context.module(&self.name); let mut module = context.module(&self.name);
let mut functions = HashMap::new(); let mut functions = HashMap::new();
for function in &self.functions { for function in &self.functions {
let ret_type = function.return_type().unwrap().get_type(&context); let param_types: Vec<Type> = function
let fn_type = ret_type.function_type(
function
.parameters .parameters
.iter() .iter()
.map(|(_, p)| p.get_type(&context)) .map(|(_, p)| p.get_type())
.collect(), .collect();
);
let func = match &function.kind { let func = match &function.kind {
mir::FunctionDefinitionKind::Local(_, _) => { mir::FunctionDefinitionKind::Local(_, _) => {
module.add_function(fn_type, &function.name) module.function(&function.name, function.return_type.get_type(), param_types)
} }
mir::FunctionDefinitionKind::Extern(_) => todo!(), mir::FunctionDefinitionKind::Extern => todo!(),
}; };
functions.insert(function.name.clone(), func); functions.insert(function.name.clone(), func);
} }
for mir_function in &self.functions { for mir_function in &self.functions {
let function = functions.get(&mir_function.name).unwrap(); let function = functions.get(&mir_function.name).unwrap();
let mut entry = function.block("entry");
let mut stack_values = HashMap::new(); let mut stack_values = HashMap::new();
for (i, (p_name, p_type)) in mir_function.parameters.iter().enumerate() { for (i, (p_name, p_type)) in mir_function.parameters.iter().enumerate() {
stack_values.insert( stack_values.insert(
p_name.clone(), p_name.clone(),
function.get_param(i, p_type.get_type(&context)).unwrap(), entry.build(InstructionKind::Param(i)).unwrap(),
); );
} }
@ -51,17 +51,17 @@ impl mir::Module {
context, context,
module: &module, module: &module,
function, function,
block: function.block("entry"), block: entry,
functions: functions.clone(), functions: &functions,
stack_values, stack_values,
}; };
match &mir_function.kind { match &mir_function.kind {
mir::FunctionDefinitionKind::Local(block, _) => { mir::FunctionDefinitionKind::Local(block, _) => {
if let Some(ret) = block.codegen(&mut scope) { if let Some(ret) = block.codegen(&mut scope) {
scope.block.ret(&ret).unwrap(); scope.block.terminate(TerminatorKind::Ret(ret)).unwrap();
} }
} }
mir::FunctionDefinitionKind::Extern(_) => {} mir::FunctionDefinitionKind::Extern => {}
} }
} }
@ -69,30 +69,30 @@ impl mir::Module {
} }
} }
pub struct Scope<'ctx> { pub struct Scope<'ctx, 'a> {
context: &'ctx Context, context: &'ctx Context,
module: &'ctx Module<'ctx>, module: &'ctx Module<'ctx>,
function: &'ctx Function<'ctx>, function: &'ctx Function<'ctx>,
block: BasicBlock<'ctx>, block: Block<'ctx>,
functions: HashMap<String, Function<'ctx>>, functions: &'a HashMap<String, Function<'ctx>>,
stack_values: HashMap<String, Value<'ctx>>, stack_values: HashMap<String, InstructionValue>,
} }
impl<'ctx> Scope<'ctx> { impl<'ctx, 'a> Scope<'ctx, 'a> {
pub fn with_block(&self, block: BasicBlock<'ctx>) -> Scope<'ctx> { pub fn with_block(&self, block: Block<'ctx>) -> Scope<'ctx, 'a> {
Scope { Scope {
block, block,
context: self.context,
function: self.function, function: self.function,
context: self.context,
module: self.module, module: self.module,
functions: self.functions.clone(), functions: self.functions,
stack_values: self.stack_values.clone(), stack_values: self.stack_values.clone(),
} }
} }
/// Takes the block out from this scope, swaps the given block in it's place /// Takes the block out from this scope, swaps the given block in it's place
/// and returns the old block. /// and returns the old block.
pub fn swap_block(&mut self, block: BasicBlock<'ctx>) -> BasicBlock<'ctx> { pub fn swap_block(&mut self, block: Block<'ctx>) -> Block<'ctx> {
let mut old_block = block; let mut old_block = block;
mem::swap(&mut self.block, &mut old_block); mem::swap(&mut self.block, &mut old_block);
old_block old_block
@ -100,7 +100,7 @@ impl<'ctx> Scope<'ctx> {
} }
impl mir::Statement { impl mir::Statement {
pub fn codegen<'ctx>(&self, scope: &mut Scope<'ctx>) -> Option<Value<'ctx>> { pub fn codegen<'ctx, 'a>(&self, scope: &mut Scope<'ctx, 'a>) -> Option<InstructionValue> {
match &self.0 { match &self.0 {
mir::StmtKind::Let(VariableReference(_, name, _), expression) => { mir::StmtKind::Let(VariableReference(_, name, _), expression) => {
let value = expression.codegen(scope).unwrap(); let value = expression.codegen(scope).unwrap();
@ -115,7 +115,7 @@ impl mir::Statement {
} }
impl mir::IfExpression { impl mir::IfExpression {
pub fn codegen<'ctx>(&self, scope: &mut Scope<'ctx>) -> Option<Value<'ctx>> { pub fn codegen<'ctx, 'a>(&self, scope: &mut Scope<'ctx, 'a>) -> Option<InstructionValue> {
let condition = self.0.codegen(scope).unwrap(); let condition = self.0.codegen(scope).unwrap();
// Create blocks // Create blocks
@ -125,55 +125,62 @@ impl mir::IfExpression {
let mut then_scope = scope.with_block(then_bb); let mut then_scope = scope.with_block(then_bb);
let then_res = self.1.codegen(&mut then_scope); let then_res = self.1.codegen(&mut then_scope);
then_scope.block.br(&scope.block).ok(); then_scope
.block
.terminate(TerminatorKind::Branch(scope.block.value()))
.ok();
let else_bb = scope.function.block("else"); let else_bb = scope.function.block("else");
let mut else_scope = scope.with_block(else_bb); let mut else_scope = scope.with_block(else_bb);
let else_opt = if let Some(else_block) = &self.2 { let else_res = if let Some(else_block) = &self.2 {
before_bb before_bb
.conditional_br(&condition, &then_scope.block, &else_scope.block) .terminate(TerminatorKind::CondBr(
condition,
then_scope.block.value(),
else_scope.block.value(),
))
.unwrap(); .unwrap();
let opt = else_block.codegen(&mut else_scope); let opt = else_block.codegen(&mut else_scope);
if let Some(ret) = opt { if let Some(ret) = opt {
else_scope.block.br(&scope.block).ok(); else_scope
Some((else_scope.block, ret)) .block
.terminate(TerminatorKind::Branch(scope.block.value()))
.ok();
Some(ret)
} else { } else {
None None
} }
} else { } else {
else_scope.block.br(&scope.block).unwrap(); else_scope
.block
.terminate(TerminatorKind::Branch(scope.block.value()))
.unwrap();
before_bb before_bb
.conditional_br(&condition, &then_scope.block, &scope.block) .terminate(TerminatorKind::CondBr(
condition,
then_scope.block.value(),
scope.block.value(),
))
.unwrap(); .unwrap();
None None
}; };
if then_res.is_none() && else_opt.is_none() { if then_res.is_none() && else_res.is_none() {
None None
} else if let Ok(ret_type) = self.1.return_type() {
let phi = scope
.block
.phi(&ret_type.get_type(scope.context), "phi")
.unwrap();
if let Some(then_ret) = then_res {
phi.add_incoming(&then_ret, &then_scope.block);
}
if let Some((else_bb, else_ret)) = else_opt {
phi.add_incoming(&else_ret, &else_bb);
}
Some(phi.build())
} else { } else {
None let mut inc = Vec::from(then_res.as_slice());
inc.extend(else_res);
Some(scope.block.build(InstructionKind::Phi(vec![])).unwrap())
} }
} }
} }
impl mir::Expression { impl mir::Expression {
pub fn codegen<'ctx>(&self, scope: &mut Scope<'ctx>) -> Option<Value<'ctx>> { pub fn codegen<'ctx, 'a>(&self, scope: &mut Scope<'ctx, 'a>) -> Option<InstructionValue> {
match &self.0 { match &self.0 {
mir::ExprKind::Variable(varref) => { mir::ExprKind::Variable(varref) => {
let v = scope let v = scope
@ -182,20 +189,24 @@ impl mir::Expression {
.expect("Variable reference not found?!"); .expect("Variable reference not found?!");
Some(v.clone()) Some(v.clone())
} }
mir::ExprKind::Literal(lit) => Some(lit.codegen(scope.context)), mir::ExprKind::Literal(lit) => Some(lit.as_const(&mut scope.block)),
mir::ExprKind::BinOp(binop, lhs_exp, rhs_exp) => { mir::ExprKind::BinOp(binop, lhs_exp, rhs_exp) => {
let lhs = lhs_exp.codegen(scope).expect("lhs has no return value"); let lhs = lhs_exp.codegen(scope).expect("lhs has no return value");
let rhs = rhs_exp.codegen(scope).expect("rhs has no return value"); let rhs = rhs_exp.codegen(scope).expect("rhs has no return value");
Some(match binop { Some(match binop {
mir::BinaryOperator::Add => scope.block.add(&lhs, &rhs, "add").unwrap(), mir::BinaryOperator::Add => {
mir::BinaryOperator::Minus => scope.block.sub(&lhs, &rhs, "sub").unwrap(), scope.block.build(InstructionKind::Add(lhs, rhs)).unwrap()
}
mir::BinaryOperator::Minus => {
scope.block.build(InstructionKind::Sub(lhs, rhs)).unwrap()
}
mir::BinaryOperator::Mult => todo!(), mir::BinaryOperator::Mult => todo!(),
mir::BinaryOperator::And => todo!(), mir::BinaryOperator::And => todo!(),
mir::BinaryOperator::Logic(l) => { mir::BinaryOperator::Logic(l) => {
let ret_type = lhs_exp.return_type().expect("No ret type in lhs?"); let ret_type = lhs_exp.return_type().expect("No ret type in lhs?");
scope scope
.block .block
.integer_compare(&lhs, &rhs, &l.int_predicate(ret_type.signed()), "cmp") .build(InstructionKind::ICmp(l.int_predicate(), lhs, rhs))
.unwrap() .unwrap()
} }
}) })
@ -210,13 +221,21 @@ impl mir::Expression {
.functions .functions
.get(&call.name) .get(&call.name)
.expect("function not found!"); .expect("function not found!");
Some(scope.block.call(callee, params, "call").unwrap()) Some(
scope
.block
.build(InstructionKind::FunctionCall(callee.value(), params))
.unwrap(),
)
} }
mir::ExprKind::If(if_expression) => if_expression.codegen(scope), mir::ExprKind::If(if_expression) => if_expression.codegen(scope),
mir::ExprKind::Block(block) => { mir::ExprKind::Block(block) => {
let mut inner_scope = scope.with_block(scope.function.block("inner")); let mut inner_scope = scope.with_block(scope.function.block("inner"));
if let Some(ret) = block.codegen(&mut inner_scope) { if let Some(ret) = block.codegen(&mut inner_scope) {
inner_scope.block.br(&scope.block); inner_scope
.block
.terminate(TerminatorKind::Branch(scope.block.value()))
.unwrap();
Some(ret) Some(ret)
} else { } else {
None None
@ -227,18 +246,16 @@ impl mir::Expression {
} }
impl mir::LogicOperator { impl mir::LogicOperator {
fn int_predicate(&self, signed: bool) -> IntPredicate { fn int_predicate(&self) -> IntPredicate {
match (self, signed) { match self {
(mir::LogicOperator::LessThan, true) => IntPredicate::SLT, mir::LogicOperator::LessThan => IntPredicate::LessThan,
(mir::LogicOperator::GreaterThan, true) => IntPredicate::SGT, mir::LogicOperator::GreaterThan => IntPredicate::GreaterThan,
(mir::LogicOperator::LessThan, false) => IntPredicate::ULT,
(mir::LogicOperator::GreaterThan, false) => IntPredicate::UGT,
} }
} }
} }
impl mir::Block { impl mir::Block {
pub fn codegen<'ctx>(&self, mut scope: &mut Scope<'ctx>) -> Option<Value<'ctx>> { pub fn codegen<'ctx, 'a>(&self, mut scope: &mut Scope<'ctx, 'a>) -> Option<InstructionValue> {
for stmt in &self.statements { for stmt in &self.statements {
stmt.codegen(&mut scope); stmt.codegen(&mut scope);
} }
@ -247,7 +264,7 @@ impl mir::Block {
let ret = expr.codegen(&mut scope).unwrap(); let ret = expr.codegen(&mut scope).unwrap();
match kind { match kind {
mir::ReturnKind::Hard => { mir::ReturnKind::Hard => {
scope.block.ret(&ret).unwrap(); scope.block.terminate(TerminatorKind::Ret(ret)).unwrap();
None None
} }
mir::ReturnKind::Soft => Some(ret), mir::ReturnKind::Soft => Some(ret),
@ -259,21 +276,25 @@ impl mir::Block {
} }
impl mir::Literal { impl mir::Literal {
pub fn codegen<'ctx>(&self, context: &'ctx Context) -> Value<'ctx> { pub fn as_const(&self, block: &mut Block) -> InstructionValue {
let val: IntegerValue<'ctx> = match *self { block.build(self.as_const_kind()).unwrap()
mir::Literal::I32(val) => context.type_i32().from_signed(val as i64), }
mir::Literal::I16(val) => context.type_i16().from_signed(val as i64),
}; pub fn as_const_kind(&self) -> InstructionKind {
Value::Integer(val) InstructionKind::Constant(match *self {
mir::Literal::I32(val) => ConstValue::I32(val),
mir::Literal::I16(val) => ConstValue::I16(val),
})
} }
} }
impl TypeKind { impl TypeKind {
fn get_type<'ctx>(&self, context: &'ctx Context) -> TypeEnum<'ctx> { fn get_type(&self) -> Type {
match &self { match &self {
TypeKind::I32 => TypeEnum::Integer(context.type_i32()), TypeKind::I32 => Type::I32,
TypeKind::I16 => TypeEnum::Integer(context.type_i16()), TypeKind::I16 => Type::I16,
TypeKind::Void => panic!("Void not a supported type"), TypeKind::Void => panic!("Void not a supported type"),
TypeKind::Vague(_) => panic!("Tried to compile a vague type!"),
} }
} }
} }

View File

@ -50,10 +50,15 @@ pub fn compile(source: &str) -> Result<String, ReidError> {
dbg!(&mir_module); dbg!(&mir_module);
let mut context = Context::new(); let mut context = Context::new();
let cogegen_module = mir_module.codegen(&mut context); let codegen_module = mir_module.codegen(&mut context);
Ok(match cogegen_module.module.print_to_string() { dbg!(&codegen_module.context);
Ok(v) => v, codegen_module.context.compile();
Err(e) => panic!("Err: {:?}", e),
}) Ok(String::new())
// Ok(match cogegen_module.module.print_to_string() {
// Ok(v) => v,
// Err(e) => panic!("Err: {:?}", e),
// })
} }

View File

@ -29,6 +29,12 @@ pub enum TypeKind {
I32, I32,
I16, I16,
Void, Void,
Vague(VagueType),
}
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
pub enum VagueType {
Unknown,
} }
impl TypeKind { impl TypeKind {
@ -108,6 +114,7 @@ pub struct FunctionCall {
#[derive(Debug)] #[derive(Debug)]
pub struct FunctionDefinition { pub struct FunctionDefinition {
pub name: String, pub name: String,
pub return_type: TypeKind,
pub parameters: Vec<(String, TypeKind)>, pub parameters: Vec<(String, TypeKind)>,
pub kind: FunctionDefinitionKind, pub kind: FunctionDefinitionKind,
} }
@ -116,8 +123,7 @@ pub struct FunctionDefinition {
pub enum FunctionDefinitionKind { pub enum FunctionDefinitionKind {
/// Actual definition block and surrounding signature range /// Actual definition block and surrounding signature range
Local(Block, Metadata), Local(Block, Metadata),
/// Return Type Extern,
Extern(TypeKind),
} }
#[derive(Debug)] #[derive(Debug)]

View File

@ -54,21 +54,21 @@ impl ReturnType for IfExpression {
impl ReturnType for VariableReference { impl ReturnType for VariableReference {
fn return_type(&self) -> Result<TypeKind, ReturnTypeOther> { fn return_type(&self) -> Result<TypeKind, ReturnTypeOther> {
Ok(self.0) Ok(self.0.clone())
} }
} }
impl ReturnType for FunctionCall { impl ReturnType for FunctionCall {
fn return_type(&self) -> Result<TypeKind, ReturnTypeOther> { fn return_type(&self) -> Result<TypeKind, ReturnTypeOther> {
Ok(self.return_type) Ok(self.return_type.clone())
} }
} }
impl ReturnType for FunctionDefinition { // impl ReturnType for FunctionDefinition {
fn return_type(&self) -> Result<TypeKind, ReturnTypeOther> { // fn return_type(&self) -> Result<TypeKind, ReturnTypeOther> {
match &self.kind { // match &self.kind {
FunctionDefinitionKind::Local(block, _) => block.return_type(), // FunctionDefinitionKind::Local(block, _) => block.return_type(),
FunctionDefinitionKind::Extern(type_kind) => Ok(*type_kind), // FunctionDefinitionKind::Extern(type_kind) => Ok(type_kind.clone()),
} // }
} // }
} // }